Status of the Top Quark: Top Production Cross Section and Top Properties

Véronique Boisvert University of Rochester For CDF and DØ Collaborations

Les Rencontres de Physique de la Vallée d'Aoste Friday March 10th 2006

The "Big" Surprise:

Large Top mass implications:

- Top-Higgs Yukawa coupling~1
- Largest radiative corrections to W mass
- \Rightarrow Connection to EWSB?
- For $m_t = 175 \text{GeV/c}^2$, $\Gamma \sim 1.4 \text{GeV} >> \Lambda_{\text{QCD}}$
- ⇒ No top-hadrons or t<u>t</u>quarkonium
- ⇒ Top spin transferred to decay products

T S

The Data Sample

Accelerator doing very well

- Record peak inst. luminosity
 - 1.8x10³²/cm²s
 - If no further improvements:
 - 4fb⁻¹ in 2009
- Electron cooling on track
 - Could get 8fb⁻¹ in 2009!

Detectors doing well:

- Upgrades finishing up to deal with luminosity increase coming in 2006
 - DØ installing silicon L0 now

In this talk:

All very recent results!

New 🗧 never been shown before

-

$$\sigma = \frac{N_{obs} - N_{backg}}{A \cdot L \cdot \varepsilon}$$

Selection:

- 2 leptons E_T>20GeV with opposite sign
- >=2 jets E_T>15GeV
- Missing E_T>25GeV (and away from any jet)
- $H_T = p_{Tlep} + E_{Tjet} + ME_T > 200 GeV$

• Backgrounds: • Physics: WW/WZ/ZZ, $Z \rightarrow \tau\tau$ • Instrumental: fake lepton

 $\sigma(t\underline{t}) = 8.3 \pm 1.5 \text{ (stat)} \pm 1.0 \text{ (syst)} + 0.5 \text{ (lumi) pb}$

epton+Jets Channel: b Tagging

Summary of Top Pair Production Cross Sections

Red = new

Can already test theory estimate
Soon can test among different channels

T

Summary of Top Pair Production Cross Sections

Single Top Production

Electroweak production:

- Different New Physics
 - New resonances
 - vs FCNC
- Measurement of |V_{tb}|
- Anomalous Wtb coupling
- Selection:
 - Same as Lepton+Jets with lower jet multiplicity
 - Use b tagging information

Sophisticated discrimination against overwhelming backgrounds (W+jets and tt):

Likelihood discriminants

e,μ

q- or b-jet

- Neural Nets
- Decision trees

Single Top Production

World's best limits: DØ likelihood discriminant analysis:

Different filters for t vs tt and t vs W+jets and e vs μ, and single tag (mostly t-channel) vs double-tag (mostly schannel) :

• 16 variables (leading jet p_T , 2nd leading jet p_T , $M_T(W)$, sphericity, Q(lepton)x η (untagged jet), etc.

Search for Heavy Quark t'→Wq

Several theoretical scenarios:

- Heavy 4th generation quark (не et. Al. Hep-ph/0102144)
- "beautiful mirrors" models (Wagner et. Al. Hep-ph/0109097)
 - Consistent with EWK data
- CDF performs 2D fit: $H_T = \sum_{jets} E_T + E_{T,I} + ME_T$ and M_{reco} from χ^2 mass fit in Lepton + Jets channel
- Uses binned likelihood fit and Bayesian limit:
 - Rule out at 95% CL a t' with 196 GeV/c² < m(t') < 207 GeV/c²
- ~700pb⁻¹ measurement expected soon!

Does t \rightarrow Wb only?

≥2

Number of tagged jets

≥2

Number of tagged jets

R>0.61 at 95%CL |V_{tb}|>0.78 at 95%CL

Search for Charged Higgs

- Models with 2 H doublets: 5
 Higgs bosons (h⁰,H⁰,A,H[±]), H[±]:
 - Direct production: small production rate, hard signature
 - Indirect production: top associated (if m_{H±} <m_t-m_b, t→H[±] b competes with t→Wb)
 - Maybe large production rates
 - Clean signature

- Various H[±] decays affect differently σ_{tt} in the various channels
 - Look for imbalance among dilepton, L+J(1,2 tags), L+τ

Is Top Really "True"?

Top chargeTop lifetimeW helicity

Top Charge

- t \rightarrow Wb but W⁺b or W⁻b? Q=-4/3: exotic quark (PRD, hep-ph/9850131)
 - Accommodates better EWK fit (hep-ph/9909537)
 - True top quark would be at higher mass (~270GeV/c²)
- DØ uses Lepton+Jets double-tag sample
 - χ^2 fit for pairing of leptonic b
 - JetQ for flavor tagging b $\Lambda = \frac{\prod_{i} prob^{2e/3}}{\prod_{i} prob^{-4e/3}}$ jet

Likelihood ratio test:

$\downarrow JetQ = \frac{\sum q_i \cdot p_{Ti}^{0.6}}{\sum n^{0.6}}$

Measure $\Lambda_{data} = 11.5$ exclude -4e/3 hypothesis to 94% CL exclude 2e/3 hypothesis to 66% CL 24

Top Lifetime

SM top has τ~10⁻²⁴s

- Measuring lifetime
 - Sensitive to production mechanism from long lived particles
- CDF uses Lepton+Jets channel with b jet tagged
 - Measure lepton impact parameter (d₀)
- Backgrounds:
 - Prompt: W+jets, Drell-Yan, Diboson
 - Displaced lepton: W(Z) decaying to τ, Semileptonic b,c decays, photon conversion (failing filter)
- Calibration: use DY near Z resonance to get d₀ resolution

cτ_t<52.5μm (τ<1.75x10⁻¹³s) at 95%CL

W Helicity

- In SM (V-A coupling of tWb) only 2 helicities allowed:
 - f₊=0, f₋~0.3, f₀~0.7
- DØ uses both the cosθ* (in Lepton+Jets)and lepton P_T (in dilepton) variables to

measure f_+ (fix f_0)

----28

27

26

25

-0.1

0

W Helicity

Cosθ* in Lepton+Jets: (230pb⁻¹)

- 2 Template analysis:
 - B tagging used •
 - Topological variables
- χ^2 fit is used for lepton matching (purity: 60%)

95% CL

0.4

f_

0.3

0.2

DØ

0.1

Combined result:

Lepton P_{T} in dilepton: (370pb⁻¹)

Conclusions

Pair production cross section: still consistent with SM and among channels

- New era of being systematics limited
- Meaningful comparison among channels around the corner!
- Single top production: observation coming very soon!
- Top properties (R, H[±], charge, lifetime, W helicity)

All consistent with SM top so far

Shameless Publicity

- Tevatron and both CDF and D0 doing very well!
- Top physics is crucial!:
 - Likely related to EWSB
 - Rich analysis environment:
 - B tagging (and even flavor tagging!)
 - Various analysis technique
 - "Full" event reconstruction
- Current machine at the energy frontier!
 - CDF+D0: 95 papers (published or accepted or submitted) in Run II so far!
 - http://www-d0.fnal.gov/www_buffer/pub/Run2_publications.html
 - http://www-cdf.fnal.gov/physics/pub_run2/

Backup slides

Single top projection

L+J b tag systematics

Source	Systematic (%)	
b-tagging	6.5	
Luminosity	6.0	
PDF	5.8	
Jet Energy Scale	3.0	
ISR/FSR	2.6	
Lepton Identification	2.0	
Total	11.5	

Top Lifetime

Top lifetime resolution

Back up slides

FCNC

- No FCNC at tree level in SM
- Enhancement in NP models

- H1: 2.2σ excess in leptonic channel
- CDF & D0 working on it

W helicity

CDF Run I:

- M²_{lb} in dilepton and L+Jets channel
- Combined with lepton p_T in dilepton (correlation: 0.4)

$$\cos\theta^{\star} = \frac{p_{\ell} \cdot p_b - E_{\ell}E_b}{|\mathbf{p}_{\ell}||\mathbf{p}_b|} \simeq \frac{2{M_{lb}}^2}{m_t^2 - M_W^2} - 1,$$

R measurement

Test 3 generations?

If $|V_{ts}| = 0.1$ and three generations, $\rightarrow R = 0.99$

If four generations and, for example, $|V_{tb}| = 0.5$, $\rightarrow R = 0.96$

T

Top Charge

- $Q_1 = |q_1 + q_b|$
- $Q_2 = |-q_1 + q_B|$
- Corrections:
 - C-jet fraction (6%)
 - B mixing
 - Cascade decays

<u>b</u> jet charge

Source	Predicted C.L.	Observed C.L.
Stat. only.	96.9	98.7
+ Jet energy resolution	96.9	98.5
+ Jet energy calibration	97.0	98.6
+ Jet reconstruction	96.6	98.3
+ Jet charge corrections	94.9	97.4
+ <i>b</i> -jet production meachanism	94.5	97.0
+ η spectrum of <i>b</i> -jets	93.8	96.6
+ Top mass	92.4	96.1
$+ p_T$ spectrum of <i>b</i> -jets	89.0	93.7

