V.Balagura, ITEP (Moscow), Belle Collaboration

Spectroscopy and New States at **B** factories or X, Y, Z ... **Outline** X(3872) – quantum numbers ♦ B ? K Y(3940) ? K (ω J/ψ) Summary

V.Balagura, Belle

Spectroscopy & New States

X(3872)

Observed by Belle in B[±] ? K[±] p⁺p⁻J/y

152M BB, PRL91, 262001 (2003)

Confirmed by CDF, D0, BaBar, world average: M=3871.9±0.5 MeV/c²

charmonium, DD*, tetraquarks...? E.S.Swanson,PLB588,189(2004) L.Maiani et al.,PRD71,014028(2005)

<u>Updates</u> no. of B's in M(ppJ/y) bins Br(B?XK) Br(X?p+p J/y) = → (1.01±0.25±0.10)x10⁻⁵

(1.31±0.24±0.13)x10⁻⁵

Belle, 275M BB (hep-ex/0505038)

BaBar, 232M BB (hep-ex/0507090)

V.Balagura, Belle

Spectroscopy & New States

X(3872)

<u>**B[±] ? K[±] g J/y**</u>

V.Balagura, Belle

Spectroscopy & New States

J^{PC}(X(3872))=0⁺⁺, 1⁺⁺, 2⁺⁺?

V.Balagura, Belle

Spectroscopy & New States

X(3872)

M(p⁺p) in CDF, hep-ex/0512074

no. X(3872) in M(pp) bins

Differences with Belle

1. Description of X(3872), ρ resonances in addition to Breit-Wigner term (BW) include Blatt-Weisskopf factors: f_L(k)xBW

$$f_{L=0}(k) = 1, \quad f_{L=1}(k) = \frac{1}{1 + R^2 k^2}$$

R is the radius of interaction for the meson.

 B(ω? π⁺π⁻) is small but its contribution can be enhanced by ρ-ω interference seen in e⁺e⁻? π⁺π⁻. Relative phase in the fit is set to 95°, ratio B(X? J/ψω)/ B(X? J/ψρ)=1 is taken from Belle.

Fit probability:

L=0: 19% L=1: 53%

P(X(3872))=-1 is not ruled out

V.Balagura, Belle

Spectroscopy & New States

Opposite parity 0⁻⁺ (P wave) has been also ruled out

If P(X)=+1: J^{PC}= 0⁺⁺, 1⁺⁺, 2⁺⁺?

2⁺⁺ is not seriously challenged by angular distribution tests

V.Balagura, Belle

Spectroscopy & New States

Y(4260)

e⁺e⁻? g_{SR}Y(4260) ? g_{SR} p⁺p⁻ J/y

Search for e⁺e⁻? g_{SR}X(3872) ? g_{SR} p⁺p⁻ J/y (allowed only for J^{PC}=1⁻⁻): G_{ee}B(X(3872)? p⁺p⁻ J/y)<6.2 eV @ 90%CL, BaBar,89 fb⁻¹, *PRD71, 052001 (2005)*

g

g

e

G(Y? e⁺e⁻)B(Y? p⁺p⁻J/y)=5.5\pm1.0\pm_{0.7}^{0.8} eV

(Single resonance hypothesis)

ISR production is confirmed by g_{SR} reconstruction and M_{rec} distribution

La Thuile, 5-11 Mar 2006

Spectroscopy & New States

V.Balagura, Belle

Y(4260)

Other results on Y(4260) from BaBar

e⁺e⁻? pp study with ISR

232 fb⁻¹, hep-ex/0512023

Interference with nonresonant e⁺e⁻ ? pp process is included

B(Y? pp)/B(Y? p⁺p⁻J/y)<13% @90% CL

B⁻?K⁻**p**⁺**p**⁻J/y

232M BB, hep-ex/0507090

K₁(1270)? K⁻p⁺p⁻ veto

B(B⁻?K⁻Y(4260))xB(Y? **p**⁺**p**⁻J/**y**)= (1.2 ... 2.9)x10⁻⁵ at 90% CL

V.Balagura, Belle

Spectroscopy & New States

V.Balagura, Belle

Spectroscopy & New States

Z(3930)

gg? Z(3930) ? DD

Belle, 395 fb⁻¹, hep-ex/0512035

e+,e- are not reconstructed, P_t(DD)<50 MeV

D⁰D⁰ ? (K⁻p⁺), (K⁻p⁺p⁰, K⁻3p⁺) D⁺D⁻ ? (K⁻p⁺p⁺) (K⁻p⁺p⁺)

q*: (D, beam axis) in ggframe

 $\Gamma_{gg}(Z)Br(Z \to D\overline{D}) =$

 $0.18 \pm 0.05(stat.) \pm 0.03(syst.) \ keV$

S.Godfrey, N.Isgur, PRD32, 189 (1985) C.R.Münz, Nucl. Phys. A609, 364 (1996)

V.Balagura, Belle

Spectroscopy & New States

B?KY(3940)?KwJ/y

Belle, 275M BB, PRL94, 182002 (2005)

Large B(J/y or y' + light hadrons), decays to DD^(*) are suppressed, expected width is similar. However according to lattice QCD M ~ 4.3-4.5 GeV

F.E.Close, P.R.Page, Nucl.Phys.B443,233(1995)

C.Banner et al., PRD56,7039(1997) Z.-H. Mei, X.-Q.Luo, Int.J.Mod.Phys.A18, 5713 (2003)

V.Balagura, Belle

Spectroscopy & New States

Summary

B factories are great sources of charm & cc states

Recent discoveries have shown that there are many puzzles in this field.

X(3872)			broad D**
X(3940)			
Y	(4260)		
			understanding
	X(3872) X(3940) Y	X(3872) X(3940) Y(4260)	X(3872) X(3940) Y(4260)

V.Balagura, Belle

Spectroscopy & New States