

Studies of B states at the Tevatron

Brad Abbott University of Oklahoma

LaThuile March 5-11 2006

- Introduction
 - Tevatron status
 - Detectors
- Too many results to discuss so focus on new results which are not accessible at B factories
 - B**
 - Λ_b
 - B_c
 - $B_s \to KK$
 - Dimuon Asymmetry

Tevatron performance

- Excellent performance of Tevatron in 2004 and 2005
- Machine delivered more than 1,500 pb⁻¹
- recorded (DØ/CDF)
 - 1.2 pb⁻¹ / 1.4 pb⁻¹
 - high data taking efficiency ~85%
 - record luminosity of 1.7×10³² cm⁻²/s in January 2006
- Current datasets analyzed
 - Up to 1000 pb⁻¹ analyzed
 - compare with ~100 pb⁻¹ Run I

Feb-02 May-02 Aug-02 Nov-02 Feb-03 May-03 Aug-03 Nov-03 Feb-04 May-04 Aug-04 Nov-04 Feb-05 May-05 Aug-05 Nov-05 Feb-06 May-06

CDF detector

- Solenoid 1.4T
- Silicon Tracker SVX
 - up to $|\eta|$ <2.0
 - SVX fast r readout for trigger
- Drift Chamber
 - 96 layers in $|\eta| {<} 1$
 - particle ID with dE/dx
 - r-\$\phi\$ readout for trigger
- Time of Flight
 - \rightarrow particle ID

DØ detector

- 2T Solenoid
- forward Muon + Central Muon detectors
 - excellent
 coverage |η|<2
- Fiber Tracker
 - 8 double layers
- Silicon Detector
 - up to |η|~3

- Pro's:
 - large cross section >10⁴ × larger than at present B-factories Y(4S)

B production at Tevatron

- all kinds of b hadrons produced:
 - $\mathsf{B}_{\mathsf{d}}, \mathsf{B}_{\mathsf{s}}, \mathsf{B}_{\mathsf{c}}, \mathsf{B}^{**}, \Lambda_{\mathsf{b}}, \Xi_{\mathsf{b}}, \dots$
- Con's:
 - QCD background overwhelming
 - efficient trigger and reliable tracking necessary
 - soft p_t spectrum, smaller boost than LEP
- Key for B physics program:
 - Muon system
 - Muon trigger (single and dimuon triggers)
 - Silicon Vertex + Tracker
 - trigger on displaced vertices/tracks

$$\sigma(p\overline{p} \to b\overline{b}) \approx 150 \,\mu b$$

@ $\sqrt{s} = 2 TeV$

B^{**} or B_J ($b\overline{q}$) system theory

Good qualitative understanding • 4 *P*-states: **B**^{*}₀, **B**^{*}₁, **B**₁, **B**^{*}₂

- **B**^{*}₀, **B**^{*}₁ decay through S-wave They are very wide (~100 MeV).
- B₁, B^{*}₂ decay through D-wave and should be narrow (~10 MeV)
- B_2^* can decay to $B^*\pi$ and $B\pi$;
- B_1 can decay only to $B^*\pi$;

Less good quantitative description
Prediction of masses, widths and decay properties is less precise and depends on many model parameters

Analysis

DO RunII preliminary

- Search for narrow states decaying to $\mathsf{B}^{\text{+}(^{\star})}\pi$
 - $B_1 \rightarrow B^{\star}\pi^-$; $B^{\star} \rightarrow B^+\gamma$
 - $B_2^* \rightarrow B^{*}\pi^-$; $B^{*+} \rightarrow B^+\gamma$
 - $B_2^* \rightarrow B^+\pi^-$
- Reconstruct $B^{\scriptscriptstyle +} \to J/\psi \; K^{\scriptscriptstyle +}$ with $J/\psi \to \mu \mu$

B_J selection

- For each B hadron an additional track with
 - P_T> 0.75 GeV
 - Correct charge correlation $(B^+\pi^- \text{ or } B^-\pi^+)$
 - Since B_J decays immediately after production, track was required to originate from primary vertex.

Mass Difference M(Bπ) - M(B)

Models predict widths of B_1 and B_2^* to be similar so they are set equal in fit $M(B_1)=5720.8 \pm 2.5(stat) \pm 5.3 (sys) \text{ MeV} \qquad M(B_2^*)-M(B_1)=25.2 \pm 3.0(stat) \pm 1.1 (sys) \text{ MeV}$

 $\Gamma_1 = \Gamma_2 = 6.6 \pm 5.3 (\text{stat}) \pm 4.2 (\text{sys}) \text{ MeV}$

$$\frac{BR(B_2^* \to B^*\pi)}{BR(B_2^* \to B^{(*)}\pi)} = 0.513 \pm 0.092(\text{stat}) \pm 0.115(\text{sys})$$

$$\frac{BR(B_1 \to B^{*+}\pi)}{BR(B_J \to B^{(*)}\pi)} = 0.545 \pm 0.64(\text{stat}) \pm 0.071 \text{ (sys)}$$

$$\frac{BR(b \to B_J^0 \to B\pi)}{BR(b \to B^+)} = 0.165 \pm 0.024 \text{ (stat)} \pm 0.028 \text{ (sys)}$$

First measurement of production rate, world's best mass measurement.

Search for B*_{s2}

- Similar to B^{**} , quark model predicts two wide $(B^*_{s0} \text{ and } B^*_{s1})$ and two narrow $(B_{s1} \text{ and } B^*_{s2})$ bound P states in bs system
- Due to Isospin conservation, the decay to $B_s \pi$ highly suppressed
- Search for excited states decaying to B⁺K⁻
- Similar to B** search

- For each B hadron an additional track
 - P_T > 0.6 GeV
 - Charge opposite to charge of B⁺
 - Track was required to originate from primary vertex

 μ^{-}

 K^{-}

- Kaon mass assigned to track

 \mathbf{K}^+

 B^+

Primary vertex

Results

1 fb⁻¹

DO RunII preliminary

- Significance of signal > 5.
- First Direct observation of B* <2
- Wrong sign charge correlations shows no evidence of a peak
- MC B** decaying to $B^{(*)}\pi$ but reconstructed as B⁺K⁻ show no evidence of a peak.

B⁺ K[−]

•Note: B_{s1} can only decay to $B^{*+}K^{-}$, the theory predicts the same mass splitting: $M(B_2^*)-M(B_1)=25.2 \pm 3.2 \text{ MeV}$, then B_{s1} decaying to $B^{*+}K^{-}$ is forbidden since $M(B_{s1}) < M(B^{*+}) + M(K^{-})$. Decay of $B^{*}_{s2} \rightarrow B^{*+} K^{-}$ would produce a signal at ~ 20 MeV, however due to such a small mass difference and the additional suppression factor due to the orbital angular momentum L=2 result in a strong suppression of this decay,

- Lightest b baryon (udb)
- Rich physics program in the $\Lambda_{\rm b}$
 - Spin role in heavy hyperons (polarization)
 - CP violation
 - T violation ($\Lambda_b \rightarrow \Lambda l^+ l^-$)
 - New physics ($\Lambda_b \to \Lambda l^+ l^-$)
 - Testing HQE theory in b baryons (lifetime)

Lifetime

(*) Includes D0 and CDF Run II measurements

Λ_{b}

• Reconstruct both $\Lambda_b \rightarrow J/\psi \Lambda$ with $\Lambda \rightarrow p\pi$ and $B_d \rightarrow J/\psi K_s$. Similar event topologies and can use the much larger yields in B_d $\rightarrow J/\psi K_s$ to validate analysis procedure and study systematics

Blind analysis to avoid biases

Measured lifetime of over 8 different B⁰ and B⁺ decays to ensure lifetime measurements well understood

Results

• Extract lifetime with unbinned likelihood fit to proper decay length and mass event information.

- B_c is ground state of bc system
 - Unique system with two heavy quarks of different flavor
 - Probes heavy-quark theories in the region between the cc and bb
 - o m_{exp} = 6400 ± 390 ± 130 MeV/c² (first observation B_c →J/ψμX CDF Run I, PRD 58, 112004)
 - DØ observed B_c in this mode in 2004
 - o m_{exp} = 6287.0 ± 4.8 Mev/c² (CDF Run II, B_c→J/ψπ)
 - $\tau_{exp} = 0.46^{+0.18} + 0.03 \text{ ps} (D\emptyset/\text{CDF})^{\bullet}$ semileptonic decays)

 B_c challenging. Low production rate B⁺,B⁰:40%, B_s,B baryons: 10%

B_c~ .05% Factor of 3 shorter lifetime so cannot apply long lifetime cuts to reduce backgrounds

- Want to measure properties of B_c
 - Lifetime and Mass measurement
 - Precise lifetime measurement will determine the relative importance of the three dominant decay modes and the interactions of the two heavy quarks.

B_c lifetime and production cross section

- Reconstruct $B_c \rightarrow J/\psi ev$
- Important to understand backgrounds
 - Fake electrons
 - Electrons from photon conversions
 - bb contamination
- J/ψ collected on dimuon triggers
- Electrons selected using a 10 variable likelihood function
 - PDF for electrons from conversions
 - PDF for pion, kaon, proton similar so use ${\rm K_s} \to \pi\pi$

Signal: 114.9 ± 15.5 ± 13.6

Background estimated using hadron tracks, electrons tagged as conversions and MC

Probability of background to fluctuate to signal is 3.2 \times 10 9 which is a significance of 5.9 σ

Results

 $\tau(B_c) = 0.474 + 0.073 - 0.066 \pm 0.033$ (sys) ps

 $\tau(B_c)$ = 0.448 +0.123 - 0.096 ± 0.121 ps DØ

 $B_c \rightarrow J/\psi \pi$

- Full reconstruction allows for precise mass measurement
- New analysis
 - Tune selection on the data: $B_u \rightarrow J/\psi$ K reference decay
 - After approval, "open box".
 - Wait for events to become a significant excess
 - Measure properties of the $\rm B_{\rm c}$

 $B_c \rightarrow J/\psi \pi$

$B_s \rightarrow K^+K^-$ lifetime

- Displaced vertex trigger allows for triggering of events
- B \rightarrow hh mass peak dominated by 4 major decay modes $B_d \rightarrow K^+\pi^-$, $B_d \rightarrow \pi^+\pi^-$, $B_s \rightarrow K^+K^-$, $B_s \rightarrow K^-\pi^+$
- $B_s \to KK \ CP$ even state so $\Delta\Gamma$ can be extracted by comparing to other measurements
- Relative signal fractions and B_d and B_s lifetimes extracted using a combined multidimensional unbinned likelihood fit
 - Μππ
 - $q1(1-p_1/p_2)$ where $p_1 < p_2$
 - p₁+p₂
 - dE/dX
 - Cτ
 - σ_{cτ}

Fit Results

- B_d fit consistent with PDG value (460.8 ± 4.5 μ m)
- Fix B_d lifetime to PDG value
- $f(B_d \rightarrow K\pi)=62.7 \pm 1.7\%$
- $f(B_d \rightarrow \pi \pi)=15.3 \pm 1.5\%$
- $f(B_s \rightarrow KK) = 22.3 \pm 1.7\%$
- $f(B_s \rightarrow K\pi)=-0.3 \pm 1.0\%$
- f(BKG)=27.8 ± 0.4 %

 $c\tau(B_s \rightarrow K^+K^-) = 1.53 \pm 0.18(stat) \pm 0.02(sys) \text{ ps}$

Using HFAG B_s lifetime in flavor specific decays

 $\frac{\Delta \Gamma_{CP}}{\Gamma_{CP}} \left(B_s \to K^+ K^- \right) = -0.08 \pm 0.23 \pm 0.03$

Dimuon charge asymmetry

- CP violation in $K^0 \leftrightarrow \overline{K^0}$ described by ϵ_K
- ε_{B0} is the CP violating parameter in (B⁰, B⁰) system
- Dimuon charge asymmetry A
- Assuming A is due to asymmetric $B^0 \leftrightarrow B^0$ mixing

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

$$\frac{\Re(\varepsilon_{B^0})}{1+|\varepsilon_{B^0}|^2} = \Im\left\{\frac{\Gamma_{12}}{4M_{12}}\right\} = \frac{A_{B^0}}{4} \equiv fA$$

 $M_{12}(\Gamma_{12})$ is real(imaginary) part of transition Matrix element of Hamiltonian corresponding to B_0, B_0 mixing and decay. A_{B^0} is dimuon charge asymmetry from direct-direct decays of B_0B_0 pairs

> SM: A_B⁰= -0.0005 ± 0.00011 World Average: 0.002 ± 0.013

The asymmetry is sensitive to several extensions to the SM

Extracting Physics Asymmetry

• In the ideal symmetric world and symmetric detector:

$$n_{q}^{\beta\gamma}=\frac{1}{4}N\ \epsilon^{\beta}$$

- q charge of a muon (q = ±1);
- β Polarity of toroid ($\beta = \pm 1$);
- γ muon direction, γ = +1 for η > 0; γ = -1 for η < 0;
- ϵ^{β} fraction of integrated luminosity with toroid polarity β ;
- N number of selected muons (in dimuon events!)

 Physics asymmetry A between positive and negative muons related to CP violation :

Asymmetries

$$n_{q}^{\beta\gamma} = \frac{1}{4} N \,\epsilon^{\beta} (1 + q \,A) (1 + q \,\gamma \,A_{fb}) (1 + q \,\beta \,A_{q\beta}) (1 + \gamma \,A_{det}) (1 + q \,\beta \,\gamma \,A_{ro}) (1 + \beta \gamma A_{\beta\gamma})$$

2 Physics asymmetries A, ${\rm A_{fb}}$ \rightarrow 8 unknowns, 8 $n_q^{\beta\gamma}$ ϵ^{β}, N

 Muon toroid polarity is regularly reversed which allows a measure of detector related asymmetries.

$$\frac{(n_{+}^{++} + n_{+}^{+-} - n_{-}^{++} - n_{-}^{+-}) + e(n_{+}^{-+} + n_{+}^{--} - n_{-}^{-+} - n_{-}^{--})}{(n_{+}^{++} + n_{+}^{+-} + n_{-}^{+-}) + e(n_{+}^{-+} + n_{+}^{--} + n_{-}^{-+} + n_{-}^{--})} = A + A_{fb}A_{det}$$

A dimuon charge asymmetry, A_{fb} is forward-backward asymmetry (tendency for μ + to go in proton direction and μ - to go in anti-proton direction. A_{det} detector asymmetry. $e=\epsilon+/\epsilon-$.

Detector asymmetries small (before averaging over polarities) < 0.006 on dimuon charge asymmetry

Dimuon processes

• Probability that a b quark mixes and decays as a b is

$$\chi = f_d \, \frac{\beta_d}{\langle \beta \rangle} \chi_d + f_s \, \frac{\beta_s}{\langle \beta \rangle} \chi_s$$

Study this distribution to see if $\chi_d = \overline{\chi}_d$

 f_d , fs - fractions of b-hadrons that are produced as B^0 or B_s

 β_d, β_s and $\langle \beta \rangle$ are branching fractions for B⁰, B_s and b-hadron admixture decaying to μX

Compare χ to known value to ensure no biases in measurement

Need to take into account many dimuon processes:

 $b \rightarrow \mu^{-}, b \rightarrow \mu^{+}$ $b \rightarrow \mu^{-}, b \rightarrow c \rightarrow \mu^{-}$ $b \rightarrow c \rightarrow \mu^{+}, b \rightarrow c \rightarrow \mu^{-}$ $b \rightarrow \mu^{-}c \rightarrow \mu^{+}$ $c \rightarrow \mu^{+}, c \rightarrow \mu^{-}$ Drell Yan, J/ ψ , Y Dimuon cosmic rays μ + K[±] decays μ + cosmic μ +punchthrough μ +combinatoric

1 fb⁻¹

$$\frac{\Re(\varepsilon_{B^0})}{\left|1+\left|\varepsilon_{B^0}\right|^2}=$$

-0.0011 ± 0.0010(stat) ± 0.0007 (sys) (D0 preliminary) PDG: 0.0005 ± 0.0031

- Mixing probability averaged over the mix of hadrons with a b quark
 <χ>= 0.136 ± 0.001(stat) ± 0.024(sys) (D0 preliminary)
 PDG: <χ> = 0.127 ± 0.006
- A_{fb}= 0.0004 ± 0.0004(stat) ± 0.0001(sys) (D0 preliminary)

Conclusion

- Tevatron is providing a rich program in B physics
 - Physics results using 1 fb⁻¹ of data
 - Measuring properties of B**
 - First Observation of B*₅₂
 - Improving Λ_b and B_c lifetime measurement
 - World's best measurement of B_c mass
 - New Channel for Measuring $\Delta\Gamma/\Gamma$
 - World's best measurement of ϵ_{B^0}
- Tevatron currently in shutdown
 - DØ will be adding in a LO silicon detector. Provide much better vertex resolution. Hope to soon increase bandwidth for B physics
 - CDF improve silicon vertex trigger to allow increase of factor of 2 trigger rate. Improve tracking trigger and PC farm to increase purity and utilize higher b physics rate
- Data sample will continue to increase and detectors are being improved so B physics at the Tevatron will continue for many years.