Imaging the High-Energy Neutrino Universe from the South Pole

Results from AMANDA and Status of IceCube

Kurt Woschnagg University of California - Berkeley

Les Rencontres de Physique de la Vallée d'Aoste La Thuile, Feb 27 – Mar 5, 2005 Results and Perspectives in Particle Physics I c e C u b e

http://icecube.wisc.edu

http://amanda.uci.edu

Neutrino Astronomy

Protons: directions scrambled by extragalactic magnetic fields
?-rays: straight-line propagation but reprocessed in sources; extragalactic backgrounds absorb E? > TeV
Neutrinos: straight-line propagation; not absorbed, but difficult to detect

High-Energy Neutrino Production and Detection

Candidate astrophysical accelerators for high energy cosmic rays:

- Active Galactic Nuclei
- Gamma-Ray Bursts
- Supernova Remnants

Neutrino production at source: p+γ or p+p collisions ? pion decay ? neutrinos Neutrino flavors:

ne: nm: nt 1:2:~0 at source 1:1:1 at detector Neutrino astronomy requires large detectors

- Low extra-terrestrial neutrino fluxes
- Small cross-sections

[not to scale]

and the second se

The Antarctic Muon and Neutrino Detector Array

Neutrino Detection in Polar Ice

Longer absorption length ? larger effective volume

Detector medium: ice to meet you

Ice properties not uniform: vertical structure due to dust

Average optical ice parameters:

l_{abs} ~ 110 m @ 400 nm l_{sca} ~ 20 m @ 400 nm

An up-going neutrino event in AMANDA

color = time size = amplitude

Atmospheric Neutrinos

AMANDA test beam(s): atmospheric ? (and µ)

- ? Neural Network energy reconstruction (up-going μ)
- ? Regularized unfolding? energy spectrum

Set limit on cosmic neutrino flux: How much E⁻² cosmic ? signal allowed within uncertainty of highest energy bin?

Limit on diffuse E⁻² $?_{\mu}$ flux (100-300 TeV): E²F_{n_{\mu}}(E) < 2.6-10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹

Diffuse ExtraTerrestrial Neutrino Search

Diffuse PeV-EeV Neutrino Search

Earth opaque to PeV neutrinos

? look up and close to horizon

Look for very bright events (large number of Optical Modules with hits)

Train neural network to distinguish E⁻² signal from background

 $N_{obs} = 5$ events $N_{bgr} = 4.6 \pm 36\%$ events

Astroparticle Physics 22 (2005) 339 Limit on diffuse E⁻² ? flux (1 PeV-3 EeV): E

Diffuse All-Flavor Neutrino Flux Limits

Neutrino Point Source Search

No evidence for point sources with an E⁻² energy spectrum

Consistent with atmospheric ?

"Hot Spot" Search

Significance Map for 2000-2003

Round Up the Usual Suspects

Search for high energy neutrino excess from known gamma emitting sources

Usual suspect	Z	Luminosity distance	N _{observed}	N _{back}	
1ES 1959+650	0.047	219 Mpc	5	3.71	
Markarian 421	0.03	140 Mpc	6	5.58	
QSO 1633+382	1.8	14000 Mpc	4	5.58	
QSO 0219+428	0.44	2600 Mpc	4	4.31	
CRAB		1.9 kpc	10	5.36	Supernova Remnant

No Statistically Significant Excess from 33 Targeted Objects

Indirect Dark Matter Search

Sensitivity to muon flux from neutralino annihilations in the Sun or the center of the Earth

Indirect Dark Matter Search

PRELIMINARY

The Next Generation: IceCube

- 80 strings with 60 optical modules (OMs) on each
- Effective Volume ~ 1 km³
 - Size required to see
 "guaranteed" neutrino sources
- Geometry optimized for TeV-PeV (EeV) neutrinos
 - 17 m OM spacing
 - 125 between strings
- Surface Array (IceTop)
- PMT signal digitization in ice

IceCube Sensitivity

1:1:1 flavor flux ratio

IceCube All-Flavor Neutrino Detection

Simulated 2×10¹⁹ eV neutrino event

in AMANDA

in IceCube

January 2005: First string deployed! 60 optical modules Deepest module at 2450 m

Conclusions

No extraterrestrial ? signal observed...yet

- Limits (TeV-EeV) on diffuse ET neutrino flux
- Point source searches:

No statistically significant hot spots
No evidence for high-energy neutrino emission from gamma emitting objects

IceCube is under construction

- 2-3 orders of magnitude increase in sensitivity
- Higher energies
- All flavors

The AMANDA Collaboration

United States

Bartol Research Institute UC Berkeley UC Irvine Pennsylvania State UW Madison UW River Falls LBNL Berkeley

VUB-IIHE, Brussel ULB-IIHE, Bruxelles Université de Mons-Hainaut Imperial College, London DESY, Zeuthen

Antarctica

South Pole Station

Europe

Mainz Universität Wuppertal Universität Universität Dortmund Stockholms Universitet Uppsala Universitet Kalmar Universitet

~150 members

