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• Seeing the Universe
• What has LIGO Seen?

• Recent results
• What could LIGO see?

• The prospects for the 
future

l The New Eyes:

» What Does LIGO See? 
Gravitational waves

» How Does LIGO See?
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The basic layout
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LIGO Hanford Observatory
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LIGO Livingston Observatory
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LIGO Facilities
beam tube enclosure

• minimal enclosure

• reinforced concrete

• no services
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LIGO
beam tube

l LIGO beam tube under 
construction in January 
1998

l 65 ft spiral welded 
sections

l girth welded in portable 
clean room in the field

1.2 m diameter - 3mm stainless
50 km of weld
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Physical Effects of the Waves
l As gravitational waves pass, they change the distance between 

neighboring bodies

Time

t = 0 (period)/4 (period)/2 3(period)/4 (period)

• Fractional change in distance is the strain given by   
h = δL / L

L
L+δL

l Technical Points:
» Radiation is transverse:no distortion along the line of motion
» Radiation field is traceless: Area of the loop stays constant

l Second Technical Point:
» Spin-2 massless field: two polarizations
» Second polarization:  rotate the diagram 45degress
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Note the orientation

3002 km
(L/c = 10 ms)

Hanford 
Observatory

Caltech

Livingston
Observatory

MIT
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How does LIGO See?

Impinging gravitational wave 
causes one arm to stretch 
and the other to contract.Causing a fringe shift 

at the photo diode.

• LIGO design goal: Arm length of 4km 
measure  h = δL/L ~ 10-21 which is an 
astrophysically interesting target

δL~ 10       meters -18
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How does LIGO See?

Impinging gravitational wave 
causes one arm to stretch 
and the other to contract.Causing a fringe shift 

at the photo diode.

Feed back forces are 
applied to the mass to 
keep the PD near dark

Data rate: 16KHz
Strain channels only
About 1% of the data
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What Limits The Vision?

Photon Counting Statisitics
[Shot noise, photons arrive 
“randomly’]

Seismic noise

Thermal noise. Laser 
heats the mirror

Thermal noise (kT) in the 
suspension wires



28 February 05 La Thuile 13

-

What Limits LIGO Sensitivity?
l Seismic noise limits low 

frequencies

l Thermal Noise limits middle 
frequencies

l Quantum nature of light 
(Shot Noise) limits high 
frequencies

l Technical issues  -
alignment, electronics, 
acoustics, etc limit us before 
we reach these design goals 
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LIGO Sensitivity Evolution
Hanford 4km Interferometer

Dec 01

Nov 03
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LIGO Commissioning and 
Science Timeline

Last week:
Start of S4

Seismic
Upgrade at LLO
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LIGO Livingston Observatory
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The noise gets in the way of seeing
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Vacuum Chambers
vibration isolation systems

» Reduce in-band seismic motion by 4 - 6 orders of magnitude
» Compensate for microseism at 0.15 Hz by a factor of ten
» Compensate (partially) for Earth tides
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Seismic Isolation
springs and masses

Constrained
Layer

damped spring
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LIGO
vacuum equipment



28 February 05 La Thuile 22

-

LIGO Optics
fused silica

Caltech data CSIRO data

l Surface uniformity < 1 nm rms
l Scatter < 50 ppm
l Absorption <  2 ppm
l ROC matched < 3%
l Internal mode Q’s > 2 x 106
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Test Masses / Core Optics

Full-size Advanced LIGO 
sapphire substrate
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What does LIGO See?

l Einstein’s field equations (1915):
» Relate the curvature of spacetime to the stress-energy of matter

l Uber die Gravitationswellen (Einstein 1918):
» Shows that his equations reduce to wave-equations in weak-field 

limit

• Essence of EFE’s:
» When matter moves, or 

changes its configuration, 
its gravitational field 
changes.

» This change propagates 
outward as a ripple in the 
curvature of spacetime: a 
gravitational wave. 
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Neutron Star or Black Hole
Binary Inspiral

l General properties:
» Well understood signal –

chirps through the band
» Promising (but not 

optimistic) event rate

• Neutron Star Binaries
» Known to exist (Hulse-Taylor)
» Initial: Deff=20Mpc, R< 1/(3yr)
» Advanced: 1/(yr)<R< 2/(day)
» EOS via tidal disruption (Vallisneri)

NS/NS @ 10Mpc

• NS/BH, BH/BH
» New science: rates, dynamics of 

gravitational field, merger waves
» Initial: Deff<100Mpc, R< 1/(yr)
» Advanced: 1/(yr)<R< 10/(day)

BBH (40Msun) @ 500Mpc
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Modeling signals from binaries
l Inspiraling neutron stars, are expected to be “clean” systems. Signal won’t 

be (much) affected by accretion disks.
l Scale: ns ~ 10km in radius

orbit~ few 10’s of km
frequency of signal ~ sweep from 10Hz -1000Hz
duration ~ 10’s of seconds

l Tidal effects aren’t very important (until just before splat)
l Systems parameterized a few numbers, eg two masses
l Spins aren’t very important (for some systems)
l Method of calculation: Perturbative “post Newtonian” calcuation. 

Iterate in v/c and  GM/rc^2. [Blanchet, Damour, Iyer Will, Wiseman: PRL 
1996]

l Duration and unique characteristics allow for careful discrimination 
from “noise” events.

l Method of setting upper limits: “loudest event statistic”
CQG: Brady, Creighton, Wiseman 2004
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Results of Inspiral Search

Upper limit 
binary neutron star
coalescence rate

LIGO S1 Data
R[S1]  < 160 / yr / MWEG
R[S2] < 50 /year/MWEG

(preliminary)

l Previous observational limits
» Japanese TAMA  à R  <  30,000 / yr / MWEG
» Caltech 40m à R  <  4,000 / yr / MWEG

l Theoretical prediction        R <   2 x 10-5 / yr / MWEG

Detectable Range of S2 data reaches Andromeda!
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Spinning Neutron Stars
l General properties.

» Long lasting, nearly 
periodic.

» Caused by “mountain” on 
the surface (a few cm)

» Signal at twice the spin 
frequency

» Dopler modulate due to
– Earth’s rotatation
– Earth’s orbit
– System may be in a binary

l Results:
» Eccen(S1)<2.9X10^-4

(single pulsar)
» S2 28 Pulsars and improved 

by roughly factor of 10.
(PRL soon)

Crustal strain limit 
(4 Months @ 10kpc)

Crab pulsar limit 
(4 Month observation)

Sco X1 to x-ray flux 
(1 day)
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Searching for Pulsars

l Two types of search
» Known Pulsars:

– Sky position is known (therefore Dopler shift is known)
– Spin frequency is known
– Computationally easy (a few work stations)
– Each science run, this search has been run
– Placed limits on eccentricity [Ratio of quadrupole moments] on 

O[20] Known pulsars. [Soon to appear in PRL]
– Also used GEO data in the original work.

» Unknown spinning neutron stars
– Computationally impossible
– All sky – all frequency 
– Public computing (similar to SETI@home) einstien@home

l Down load a screen saver
l Currently 0[30000] computers enrolled
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Burst Sources
l General properties.

» Duration << observation time.
» Modeled systems are dirty.
» NS merger, supernovae hang-up, 

instabilities in nascent NS, kinks on 
cosmic strings   (Burrows, Centrella, 

Damour,  Lai, Muller, Vilenkin…..).

• Supernovae & core collapse
» Rapidly rotating NS progenitor.
» Hang-up at 100km (Muller), or at 20km 

(Brown).
» Boiling of proto-NS (Burrows).

• Promise
» Unexpected sources and serendipity.
» Detection uses minimal information (W 

Anderson, PRB, Creighton, Flanagan, Hughes…).

SN1987A

Hang-up at 
100km, D=10kpc

Hang-up at 20km, 
D=10kpcProto neutron 

star boiling
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Stochastic Background

l Method of search:
» Cross-correlated the detector outputs

being mindful of the time delay 
between sites.

» S1 Result:
Ω  < 23 [64−265Hz]

• General properties
» Weak superposition of many 

incoherent sources.
» Only characterized statistically.
» Either early universe or contemporary.

• Contemporary sources
• Unresolved supernovae,  R-mode in 

nascent neutron stars (Blair,  Vecchio, … ). 

Epoch of 
production of 

photons in Cosmic 
Microwave 

Background
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Advanced LIGO
Cubic Law for “Window” on the Universe

Initial 
LIGO

Advanced 
LIGO 

Improve amplitude 
sensitivity by a factor 
of 10x…

…number of sources 
goes up 1000x!

Virgo cluster

Today
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Light scattering Noise

l Mirrors aren’t perfect
» Light scatters and bounces off the beam-tube and reenters the 

beam.
» Can this be stopped?
» Detector has “baffles” to deflect the ligt
» Design criteria: Light scattering should never limit a future 

interferometer in this beam tube.



28 February 05 La Thuile 34

-

Baffle design
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Goals and Priorities
l Interferometer performance

» Integrate commissioning and data taking consistent 
with obtaining one year of integrated data at h = 10-21 by 
end of 2006 [Very close.]

l Physics results from LIGO I
» Initial upper limit results by early 2003 [Done, (late 2003)]
» First search results in 2005 [S4 Underway, S5 Soon]
» Reach LIGO I goals by 2007

l Advanced LIGO
» Proposal is winding its way through the process
» Possibly begin installation in 2007, or …
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Organization of Collaborations and 
Data Analysis

l Two entities:
» LIGO Laboratory (Caltech, MIT, two observatories)

– Barry Barish Director
– Procured the funding and built the instruments
– Technically LIGO Lab “owns” the data

» LIGO Scientific Collaboration  (LSC)
– Peter Saulson is the “spokesperson” (elected). [Formerly Rai Weiss]
– AGW “Data Analysis Coordinator”
– 40+ institutions, ie university groups. O[300] members
– Each institution has an MOU with the Lab, agreeing to do some work 

in exchange for “rights” to the data.
– LSC is tasked with producing the scientific results of LIGO, ie

analyzing the data and writing the papers.
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LIGO Data Analysis on the Grid
Question: How do 100’s of LSC 

scientists around the world
analyze 100s of terabytes of 
LIGO data?

Answer: Grid Computing
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The Grid in Grid Computing

l Analogy with the electrical power grid
» you don’t care where or how power for your toaster 

is generated
» you just want results (toast!)

• Grid computing to provide robust, uniform, 
access to distributed high performance 
computing resources
» don’t necessarily know (or care) from where cycles 

are delivered
» you just want to do science

• Evolve to include access to computing 
resources AND data 
» robust access to data, both raw or “real” and derived 

or “virtual” data
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Worldwide Challenge

l Worldwide effort 
involves 6 kilometer-
scale interferometers

l Statistical methods 
needed for upper limits 
and detection of 
astrophysical sources

l Computational tools 
and resources to deal 
with data from multiple 
detectors
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…Form follows function …
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Einstein’s Theory of Gravitation

§ a necessary consequence 
of Special Relativity with its 
finite speed for information 
transfer

§ gravitational waves come 
from the acceleration of 
masses and propagate 
away from their sources as 
a space-time warpage at the 
speed of light

gravitational radiation
binary inspiral 

of 
compact objects
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General Relativity
Einstein’s equations have form similar to the 

equations of elasticity. 

P = Eh (P = stress, h = strain, E = Young’s mod.)

T = (c4/8p G)h T = stress tensor, G = Curvature 
tensor and c4/8p G ~ 1042N is a space-time 
“stiffness” (energy density/unit curvature)

• Space-time can carry waves.

• They have very small amplitude 

• There is a large mismatch with ordinary matter, so very   
little energy is absorbed (very small cross-section)


