New Results from the Salt Phase at Sudbury Neutrino Observatory

Jeanne Wilson, University of Sussex, on behalf of the Sudbury Neutrino Observatory (SNO) collaboration

Whats New?

- First full Spectral analysis
 - Full evaluation of energy-dependent systematics
- Salt Day-Night asymmetry measurements
- Updated Flux measurements for increased statistics in Salt data set.

1000 tonnes D₂O

12m Diameter Acrylic Vessel

Support Structure for 9500 PMTs, 60% coverage

1700 tonnes Inner Shielding H₂O CC: $v_e + d \rightarrow p + p + e^-$ NC: $v_x + d \rightarrow p + n + v_x$ ES: $v_x + e^- \rightarrow v_x + e^-$

Urylon Liner and Radon Seal 5300 tonnes Outer Shield H₂O

SNO Program

Advantages of NaCl for Neutron Detection

- Higher capture cross section
- Higher energy release
- Many gammas

Event Isotropy

Define the parameters β_i as

 $\beta_{l} \approx \left\langle P_{l} \left(\cos \theta_{ij} \right) \right\rangle_{i \neq j}$ where P_{l} is the *l*th order Legendre olynomial.

where P_l is the l^{th} order Legendre Polynomial.

 θ_{ij} = angle between pair of hits subtended at event vertex.

> $\beta_{14} = \beta_1 + 4\beta_4$ is found to give good **CC/NC** separation

Neutron Capture Efficiency in SNO

Correlated Parameters

- Ideal scenario 4 dimensional PDF
 Statistical limitations
- Signal extraction procedure tested on 100 simulated data sets.
- Small bias (~0.8% on CC) seen using: $P(T_{eff},\beta_{14},R^{3},\cos\theta)=P(T_{eff},\beta_{14}).P(\cos\theta).P(R^{3})$
- Bias becomes insignificant using: P(T_{eff},β₁₄,R³,cosθ)=P(T_{eff},β₁₄,R³).P(cosθ/T_{eff},R³)

Major Systematic Uncertainties

- A number of systematics re-evaluated for possible differential effects in energy.
 - Energy systematics
 - β_{14} systematics
 - Fiducial volume
 - Selection efficiency
- High(er) energy calibration data used to parameterise non-linear contributions to systematic uncertainty.
 - ⁸Li, ²⁵²Cf in addition to ¹⁶N

Differential Systematic Effects

Differential Systematic Effects

Sudbury Neutrino Observatory

0

Charged Current Spectrum

Charged Current Spectrum

Predicted LMA spectral distortion

Elastic Scattering Spectrum

Elastic Scattering Spectrum

Day Night

Day Night Asymmetry

CC,ES asymmetry

 ν_{e} regeneration inside the Earth

NC asymmetry

Admixture of sterile neutrinos or unexpected matter interactions inside the Earth

$$LMA \rightarrow small A_{CC}, A_{ES}$$
$$A_{NC} = 0$$

$$\mathbf{A} = \frac{\mathbf{2}(\Phi_{\mathsf{N}} - \Phi_{\mathsf{D}})}{(\Phi_{\mathsf{N}} + \Phi_{\mathsf{D}})}$$

Day Night Asymmetry

 Blind analysis to avoid statistical bias (analysis developed on 20% of data)

Constant background sources used to investigate diurnal systematic effects.

Shape Unconstrained Analysis

Updated Flux

Energy-Unconstrained Fluxes

MSW interpretation of Results

Current Status

- Lower energy threshold
- Combined analysis of the full salt and D₂O data sets.
- NCD phase

SNO Phase III (NCD Phase)

³He Proportional Counters ("NC Detectors") now installed
Production data taking underway

40 Strings on 1-m grid 440 m total active length

Detection Principle

 ${}^{2}\text{H} + \nu_{x} \rightarrow p + n + \nu_{x} - 2.22 \text{ MeV} \quad (\text{NC})$ ${}^{3}\text{He} + n \rightarrow p + {}^{3}\text{H} + 0.76 \text{ MeV}$

Physics Motivation

Event-by-event separation. Measure NC and CC in separate data streams.

Different systematic uncertainties than neutron capture on NaCl.

Summary

- 4722 candidate neutrinos in 391 days data
- New salt results confirm and improve previous SNO data
- First full CC spectrum presented – consistent with best fit LMA
- First salt day:night measurements $-A_{cc}$ consistent with zero and LMA prediction
- Best fit mixing parameters

 $\Delta m^2 = 8.0 + 0.6_{-0.4} \times 10^{-5} \text{ eV}^2$, $\tan^2\theta = 0.45 + 0.09_{-0.07}$