Rare Decays and Exotic States at BABAR

Steven Robertson

Institute of Particle Physics & McGill University for the *BABAR* Collaboration

Les Rencontres de Physique de la Vallée d'Aoste March 3, 2005

Outline

- BABAR overview
- $B^0 \rightarrow l^+ l^-$ (and $D^0 \rightarrow l^+ l^-$)
- $B \rightarrow (\rho, \omega) \gamma$
- $B^+ \rightarrow K^+ \nu \overline{\nu}$ and $B^+ \rightarrow \pi^+ \nu \overline{\nu}$
- Lepton flavour violation: $\tau^+ \rightarrow \mu^+ \gamma$
- Pentaquark searches: $\Theta(1540)^+$ and $\Xi_5(1860)$
- Summary

All results are preliminary unless otherwise specified

The **BABAR** experiment

BABAR performance

- 244 fb⁻¹ of data since startup in 1999
 - ~245 million BB pairs plus an additional
 ~23 fb⁻¹ of off-resonance data
- Two sextants of upgraded muon system (LST based) installed during summer 2004
- Anticipate startup in mid-March
 - "Run 5" startup originally scheduled for Oct 2004 delayed by an electrical accident and subsequent investigation
 - run extended until summer 2006, with target luminosity of 500fb⁻¹
 - remainder of muon system upgrade deferred until 2006 shutdown

Process	<u>effective</u> σ (nb)
bb	1.1
СС	1.3
other qq	~2.1
ττ	0.89

Steven H. Robertson

Rare decays: B⁰→ l⁺l⁻

• Theoretically very clean: within SM only nonvanishing operator is O_{10} (axial-current) and hadronic matrix element is f_B \overline{F}_B

SM predictions $Br(B^0 \rightarrow e^+e^-) \approx 10^{-15}$ $Br(B^0 \rightarrow \mu^+\mu^-) \approx 10^{-10}$ $Br(B^0 \rightarrow \tau^+\tau^-) \approx 10^{-8}$

5

- New Physics can enhance rate by factor ~100 or more

$\mathbb{B}^0 \rightarrow l^+l^-$

- Signal efficiencies obtained from MC
 - efficiency systematics of 5.7%, 7.1% and 6.8% (for ee, μμ, eμ) due to m_{ES} and ΔE shapes, tracking and PID
- Backgrounds estimated by extrapolating sideband regions in data into signal region
- Limits obtained from unblinded signal yields in data using modified frequentist method

$$m_{\rm ES} \equiv \sqrt{E_{\rm beam}} - p_B$$
$$\Delta E^* \equiv E_B^* - E_{\rm beam}^*$$

 $\mathbf{L}*2$

n*2

channel	$N_{\rm obs}$	$N_{ m exp}^{ m bg}$	ε [%]
$B^0 \rightarrow e^+ e^-$	0	0.71 ± 0.31	21.8 ± 1.2
$B^0 o \mu^+ \mu^-$	0	0.72 ± 0.26	15.9 ± 1.1
$B^0 \to e^{\pm} \mu^{\mp}$	2	1.29 ± 0.44	18.1 ± 1.2

$\mathbf{B}^0 \rightarrow \mathbf{l}^+\mathbf{l}^-$ and $\mathbf{D}^0 \rightarrow \mathbf{l}^+\mathbf{l}^-$

Based on 111 fb⁻¹ : B(B⁰ → e⁺e⁻) < 6.1 x 10⁻⁸ at 90% C.L B(B⁰ → μ⁺μ⁻) < 8.3 x 10⁻⁸ hep-ex/0408096 B(B⁰ → e[±]μ⁻+) < 18 x 10⁻⁸ (submitted to PRL)

BABAR Preliminary!

- Also published limits on $D^0 \rightarrow 1^+1^-$
 - sensitive to NP couplings to up-type quarks
 - Veto D⁰ produced in B decays $P_D > 2.4 \text{GeV/c}$ and require D^{*+} \rightarrow D⁰ π^+ to reduce combinatorial backgrounds

	Based on 122 fb ⁻¹	(incl. offpeak)
$B(D^0 \rightarrow$	$e^+e^-) < 1.2 \times 10^{-6}$	at 90% C.L.
$B(D^0 \rightarrow$	$\mu^+\mu^-$) < 1.3 x 10 ⁻⁶	PRL 93:191801, 2004
$B(D^0 \rightarrow$	$e^{\pm}\mu^{-}$ +) < 0.81 x 10 ⁻⁶	(hep-ex/0408023)

B $\rightarrow \rho(770) \gamma$ and **B** $\rightarrow \omega(782) \gamma$

- FCNC processes proceed via EM penguin processes in SM with top quark in the loop
- Rates related by spectator quark model

$$\bar{\mathcal{B}}[B \to (\rho, \omega) \gamma] \equiv \frac{1}{2} \left\{ \mathcal{B}(B^+ \to \rho^+ \gamma) + \frac{\tau_{B^+}}{\tau_{B^0}} \left[\mathcal{B}(B^0_d \to \rho^0 \gamma) + \mathcal{B}(B^0_d \to \omega \gamma) \right] \right\}$$

- SM B[B \rightarrow (ρ,ω) γ] ~(0.9 -1.8) × 10⁻⁶ but also possible New Physics contributions
- Analysis on full dataset searches for modes $B^+ \rightarrow \rho^+ \gamma$, $B^0 \rightarrow \rho^0 \gamma$ and $B^0 \rightarrow \omega \gamma$
 - select ρ^0 → $\pi^+\pi^-$, ρ^+ → $\pi^+\pi^0$, ω → $\pi^+\pi^-\pi^0$ candidates from combinations of pions with 630 < m(ππ) < 940 MeV/c² and 764 < m(π⁺π⁻π⁰) < 795 MeV/c²
 - background primarily from ee \rightarrow qq with energetic photon from ISR or π^0/η decays, or from other radiative B decays
 - photons candidates required to survive a $\pi^0(\eta)$ mass window "veto" in which they are combined with other photons with E > 30(250) MeV

s.d

u.c.t

B \rightarrow (ρ,ω) γ results

- Additional bg rejection using neural net based on ROE (R2, $\cos \theta_{\gamma-T}^*$, moments etc.) and Fisher based on signal (θ_B^* , θ_H etc.)
- Yield extracted from 4-dimensional extended maximum likelihood fit:

Unitarity triangle constraints

• Ratio of $\mathbf{b} \rightarrow \mathbf{d}\gamma$ to $\mathbf{b} \rightarrow \mathbf{s}\gamma$ modes constrains ratio of the CKM elements $|\mathbf{V}_{td}|/|\mathbf{V}_{ts}|$:

$$\frac{\overline{\mathcal{B}}[B \to (\rho/\omega)\gamma]}{\mathcal{B}(B \to K^*\gamma)} = \left|\frac{V_{td}}{V_{ts}}\right|^2 \left(\frac{1 - m_\rho^2/M_B^2}{1 - m_{K^*}^2/M_B^2}\right)^3 \zeta^2 [1 + \Delta R]$$

Δm_s & Δm

- Using $B[B \rightarrow (\rho, \omega)\gamma]$ and BABAR measurement of $B \rightarrow K^*\gamma$, obtain limit of <0.029 (90% C.L.) on the ratio of branching fractions B. Aubert et al., PRD 70, 112006 (2004)
- Neglecting theoretical uncertainties yields $|V_{td}|/|V_{ts}| < 0.19$

CKM fitter

CHEP 2004

B⁺ \rightarrow **K**⁺ $\nu \overline{\nu}$ (and $\pi^+ \nu \overline{\nu}$)

- **b**→ svv branching fraction theoretically clean and potentially sensitive to New Physics
 - No photonic penguin (only Z penguin) and a single Wilson coefficient (C_{10}) ; no long distance contributions

- Experimental limits can constrain everything from charged Higgs and SUSY to scalar dark matter couplings (Bird et al., PRL 93,201803 (2004))
- Presence of neutrinos in the final state makes experimental search challenging, hence search only for exclusive decays
 - Standard model: $B(B^+ \rightarrow K^+\nu\nu) \sim 4 \times 10^{-6}$

Recoil method

- Physics with a single-B "beam" (a.k.a. "recoil analysis")
 - exclusively reconstruct the decay of one B from Y(4S)→ BB in either a hadronic or semileptonic decay mode
 - Hadronic B reconstruction efficiency of ~0.2% yields ~2000 charged-B "tags" per fb⁻¹; Semileptonic reconstruction yields ~5000 per fb⁻¹

B⁺→ **K**⁺ $\nu \overline{\nu}$ (had+SL recoil)

Neutrinoless **t** decays (LFV)

- Lepton flavour violation in τ decays among the most theoretically clean signatures of New Physics
 - Occurs at level of $\sim 10^{-54}$ in the SM (with non-zero neutrino mass)
 - NP models predict enhancements up to current experimental limits and enhancements in τ decays relative to μ decays (very model specific!)

$\tau^+ \rightarrow \mu^+ \gamma$ results

- Define signal region as 2σ ellipse in:
 - $\Delta E = E_{\mu\gamma} \sqrt{s/2}$
 - m_{EC} = invariant mass resulting from $\mu\gamma$ kinematic fit with $E_{\mu\gamma}$ constrained to $\sqrt{s/2}$
- Additional bg rejection from neural net $(m_{miss}, p^{T}_{miss}, p^{tag}_{max}, \cos\theta_{H}, m_{v}^{2})$
- Total of 4 events observed in all tag modes (expect 6.2 ± 0.5 background)
 - signal efficiency ~7.4%
 - Dominant backgrounds are $e^+e^- \rightarrow \mu^+\mu^-$ (66%) and $e^+e^- \rightarrow \tau^+\tau^-$ (27%)
 - Limits extracted from extended ML fit to m_{EC}
- Also BABAR limits on $\tau \rightarrow 111$ & lhh PRL 92:121801, 2004 and hep-ex/0409036

(submitted to PRL)

BABAR

Preliminary!

Pentaquark searches

- Recent pentaquark frenzy triggered by paper by D.Diakonok, V. Petrov and M. Polyakov Z.Phys. A 359 (1997) 305., and evidence for Θ⁺(1540) from several experimental groups
 - Chiral soliton model with $N^+(1710)$ as input, and mass splitting of ~180MeV
 - "Exotic" $\Theta^+(1540)$ would have to have minimal quark content of *ududs*
- BABAR preliminary results presented at ICHEP 04 (hep-ex/0408064; BABAR-CONF-04/36)
 - Search for $\Theta^+(1540)$, $\Xi^{--}(1860)$, $\Xi^{0}(1860)$ as well as other members of the antidecuplet and corresponding octet
- Results recently submitted to PRL

$\Theta(1540)^+, \Xi_5(1860)^- \text{ and } \Xi_5(1860)^0$

- Use all events accepted by trigger
 (>99% efficient for ee→ qq)
- Reconstructed invariant mass resolution ranges from 2 – 8 MeV/c depending on mode and momentum.

- with S:B of 23:1 in $\Lambda^{0}p^{-}$ mass
- signal efficiency of 6.5% (low p*) to 12% (high p*)

Steven H. Robertson La Thuile Mar 1, 2005 Rare decays and exotic states at BABAR

Pentaquark results Preliminary!

- No evidence for $\Theta(1540)^+$ or $\Xi_5(1860)$
- Production mechanism not known:
 - model-independent limits derived on inclusive production rates by fitting mass spectra in bins of p*
 - signal width varied from 1 MeV/c^2 up to natural widths of 8(18) MeV/c² for $\Theta(1540)^+$ $(\Xi(1860)^{--})$ reported by other experiments
 - yields quoted relative to total number of both $ee \rightarrow qq$ and Y(4S) events
- If $\Theta(1540)^+$ or $\Xi_5(1860)^{--}$ pentaquarks exist, they are suppressed in $e^+e^- \rightarrow qq$ relative to ordinary baryons of similar mass by at least factors of 8 and 4 respectively

Pentaquark	Cross-section	e⁺e⁻→ qq yield		
state	UL (fb)	<u>UL (10⁻⁵/event)</u>		
$\Theta^+ + \Theta^-$	171 (363)	5 (11)		
$\Xi_{5}^{} + \Xi_{5}^{++}$	25 (36)	0.74 (1.1)		
$\Gamma = 1 \text{ MeV/c}^2$ (Γ =natural width)				
Based on 123 fb ⁻¹ of BABAR data				
hep-ex/0502004 (submitted to PRL)				

BABAR

Baryon production rates in e⁺e⁻

- Present *BABAR* data set has permitted sensitive searches for rare B, τ and charm decays as well as exotic processes
 - currently ~240 fb⁻¹ recorded; anticipate doubling by summer 2006
- Stringent (and interesting) limits on EW penguin processes
 - $\quad B \rightarrow \rho/\omega \gamma, B \rightarrow K/\pi \nu\nu, B^0 \rightarrow l^+l^-, D^0 \rightarrow l^+l^-$
 - "Recoil method" analyses now have O(10⁶) reconstructed (hadronic + semileptonic) B decays, giving interesting sensitivity to modes with otherwise intractable backgrounds (e.g. B→ Kvv)
- Comprehensive limits on LFV in τ decays
- No evidence for pentaquark production in e⁺e⁻

τ decay LFV results

Charged partner of the X(3872)

- Narrow $J/\psi \pi^+\pi^-$ resonance observed in $B^- \rightarrow X K^-$ decays by Belle and confirmed by other experiments including BABAR (hep-ex/0406022)
 - kinematic distribution of $\pi^+\pi^-$ consistent with $\rho^0 \rightarrow \pi^+\pi^-$ hence might expect isospin partner decay $X^- \rightarrow J/\Psi \rho^-$

X⁻ results

- No evidence of signal apparent either in Dalitz plots or in m(J/Ψ π⁺π⁰) distributions
- Isovector signal hypothesis predicts:
 B(B → X⁻ K, X⁻ → J/Ψ π⁺π⁰) = 2 × B(B→ X(3872) K, X→ J/Ψ π⁺π⁻)
- comparison of X⁻ limits with BABAR X(3872) result excludes isovector-X hypothesis
 - (likelihood ratio favours null hypothesis by factor 1.1 ×10⁴)

B(B \rightarrow K^*\gamma) results

B→ K*γ CP asymmetry

Hadron production rates in e+e-

 Adapted from PDG, K.Hagiwara et at., Phys. Rev. D 66, 010001 (2002)

$\tau^+ \rightarrow l^+ h^- h^+$

Mar 1, 2005 Rare decays and exotic states at BABAR La Thuile

$\tau^+ \rightarrow l^+ h^- h^+$

Mar 1, 2005 Rare decays and exotic states at BABAR La Thuile Steven H. Robertson

B⁺ $\rightarrow \rho^+\gamma$ and **B**⁰ $\rightarrow \rho^0\gamma$

Mar 1, 2005Rare decays and exotic states at BABARLa ThuileSteven H. Robertson32