Overview of B and Phi factories and their future

P. Raimondi

La Thuile, March 2nd2005

Factories peak luminosities still growing

Lepton Collider Performances: Luminosity vs. Energy

Super PEP2

- Preliminary studies for an upgrade of Pep2 have been made and are still in progress
- -However, presently SLAC has decided to focus his HEP on the ILC for the next few years and officially the PEP2 program should be completed at the end of the scheduled physics runs.
- -It is still possible that this will change in the future (budget and power requirements are the most crucial points)

Super KEKB

- Solid design almost completed for a quasiadiabatic upgrade aimed at L=10³⁵ to be implemented around 2008
- After that, increasing RF power and beam currents the luminosity could exceed 2-4*10³⁵

General Schedule

	FY2004	FY2005	FY2006	FY2007	FY08	FY09	FY10	FY11	FY12	FY13	FY14
Injector		D									
Damping Ring and BT		D									
	Construc	t ring tunnel							HER:	 12 → 1	6
Main Ring RF system		> _{\$} C	rab cavities a	t Nikko		at Oho	4		LER:	0 → 8	4
				<₽			<mark>⊲</mark> SCC a	t Nikko	4 ✿		
Beam monitor system	<			↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓							
Vacuum system	↓ ↓			QD	⊲—⊳ HER b	eam p	ipes w	ith big	ger dia	. at Nił	(ko
Magnet system	• > <			∆		Ene	⊉ rgy sw	vitching	g?		
IR elements	4	D		↓ ↓ ↓							
Utilities		<									

→----- Test and design
→ Production

Strategy

Increase beam currents •1.6 A (LER) / 1.2 A (HER) \rightarrow 9.6 A (LER) / 4.1 A (HER) Smaller β_y^* •6 mm \rightarrow 3 mm Increase ξ_y •0.05 \rightarrow 0.14

Machine parameters

Parameters		LER/HER	Unit
Beam energy	E	3.5/8.0	GeV
Beam current	I	9.4/4.1	А
Particles/bunch	N	1.18 ′10 ¹¹ / 5.13 ′10 ¹¹	
Number of bunches	n _b	5018	
Circumference	С	3016.26	m
Bunch spacing	σ_{b}	0.6	m
Horizontal β at IP	β_{x}	200	mm
Vertical β at IP	β_y	3	mm
Bunch length	$\sigma_{\sf z}$	3	mm
Radiation loss	U_o	1.23/3.48	MeV/m
Synchrotron tune	Vs	0.031/0.019	
Horizontal betatron tune	V _X	45.506/44.515	
Vertical betatron tune	V _y	43.545/41.580	

Talk by Ohnishi

Machine parameters

Parameters		Crab	cavities	; withou	t/with	Unit
Horizontal emittance	E _x		30,	/24		nm
Coupling parameter	К		6,	/1		%
Crossing angle	θ_{x}		30)/ <mark>0</mark>		mrad
Luminosity reduction	R _L	0.76/ <mark>0.86</mark>				
ξ_x reduction	R _{čx}	0.73/0.99				
ξ _y reduction	R _{<i>ζ</i>у}	0.94/1.11				
Horizontal beam-beam	ξx	0.079/0.137				
Vertical beam-beam	ξy	0.051/ <mark>0.218</mark>				
Beam-beam simulation model		S-S W-S		S-S	W-S	
Vertical beam-beam	ξy	0.051		0.14	0.28	
Luminosity	Ĺ		1	2.5	5	′10 ³⁵ cm⁻² s⁻¹

Talk by Ohnishi

Crab crossing scheme

Palmer for LC (1988) Oide and Yokoya for storage rings :Phys,Rev.A40,315(1989)

Recent simulations by Ohmi showed significant increase of luminosity with crab crossing.

Vacuum System

Beam current increase causes:

Intense Synchrotron Radiation

- 27.8 kW/m in LER, twice as high as in KEKB
- 21.6 kW/m in HER, 4 times as high as in KEKB

→Ante-chamber structure

 Also motivated by need to reduce photo-electron clouds.

Heating due to Higher Order Modes (HOM)

→Design efforts to achieve small loss factor for each vacuum component.

→HOM absorbers near large impedance sources. Talk by Suetsugu

Vacuum components: Antechamber-type copper duct

Vacuum components: Bellows chamber with comb type RF-shield

High thermal strength
Low impedance
No sliding contact on the surface facing the beam

Comb-type bellows were installed in the LER (2004). Talk by Suetsugu

RF power Increase

- Required RF power provided to beam is four times as high as those of KEKB.
- The required RF voltage is relatively low.
- The number of cavities should be kept as small as possible to reduce the total impedance in the ring.

- Change to one ARES/klystron configuration.
 - KEKB: two ARES/one klystron
- The input power to each cavity will be nearly doubled.
- The number of klystrons will be more than doubled.

ARES (The Accelerator Resonantly coupled with an Energy Storage) Cavity

SuperKEKB Challenges:

•Strong longitudinal Coupled-Bunch Instabilities (CBI) due to a larger detuning of the accelerating mode, even with ARES and/or SCC.

 \rightarrow Growth rate = (0.3 ms)⁻¹

•CBI due to Higher Order Modes (HOM) and other parasitic modes.

- •Larger HOM power in each cavity.
- •Higher RF power is required.

Superconducting Cavity

SuperKEKB challenges: The expected power load to the HOM absorber is 50 kW/cavity at 4.1 A, (even) with a larger beam pipe of 220 mm ϕ .

HOM damper upgrade may be needed.

Talk by Mitsunobu

Linac Upgrade

Talks by Michizono, Akemoto, Kamitani, Satoh

beams (50 Hz).

(The present max. energy gain is 4.8 GeV)

Damping Ring

- Positron emittance needs to be damped, to pass reduced aperture of C-Band section and to meet IR dynamic aperture restrictions.
 - Electron DR may be considered later to reduce injection backgrounds in physics detector, but for now only positron DR considered.
- Damping ring located downstream of positron target, before C-Band accelerating section.

Talk by Kikuchi

Cost

Rough DAΦNE near-future schedule

	2004	2005	2006	2007
KLOE	>2	fb ⁻¹		
FINUDA			1 fb ⁻¹	
SIDDHARTA				.5fb⁻¹

Possible Future Scenarios

DAFNE2:Minimum change for E upgrade (to1.1 GeV/beam) – preserve Φ operation

DAONEUP:Limited upgrade of the presentmachine to reach $L > 5 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

SUPERDAΦNE: New Φ-factory for L > 2 · 10³³ cm⁻²s⁻¹ (optionally 1.1 GeV/beam)

LNF^τ:

New τ -charm factory for L > 10³⁴ cm⁻²s⁻¹ (a) 1.9 GeV/beam

Minimum change for E upgrade (to 1.1 GeV/beam) – preserve Phi operation

C. Ligi, R. Ricci INFN - LNF

 e^+e^- in the 1-2 GeV range - Alghero 12/9/2003

DAFNE2:

Φ and n-nbar sharing DAFNE

Energy (GeV)	0.51	1.1
Current (A)	1 - 2	1
Luminosity (10 ³²)	2	1
N bunches	100	100
l/bunch (mA)	10-20	17
τ damping (msec)	70/40	11/9
Uo (keV)	4.3 / 9.3	64 / 84
τ (h)	<1	> 2

Upgrade of the present machine to reach L = 5-10 · 10³² cm⁻²s⁻¹

The upgrade is targeted at a factor 5 luminosity increase at <u>any given current</u>, this means that with the present running conditions DAΦNE^{UP} will deliver a luminosity of about 7*10³²

Basic concepts for the Upgrade

In a tune-shift limited regime the luminosity is almost inversely proportional to both the machine radiation damping time and bunch lenght.

A general strategy to increase the luminosity is to reduce as much as possible the value of these two parameters.

The specific luminosity can be increased by a factor 5 by:

1) reducing the the damping time by a factor > 2

2) reducing the bunch lenght by a factor > 2.5

In order to fully benefict the bunch length reduction, β_y at the IP has to be reduced by the same factor and there will be headroom to decrease β_x as well.

Upgrades Plan

Damping time can be reduced by a factor > 2:

- decreasing the gap of the DAΦNE wigglers (from 41mm to < 20mm), thus increasing the gap field from 1.7 T up to 2.0 T.
- adding wigglers (2 pairs, two meters each) in the second IR region (a superconduting solution could be explored as well)

Upgrade Plan

Bunch length can be reduced by a factor > 2.5 replacing:

- all the vacuum chambers (also necessary to decrease the wigglers-gap)
- the tapers (now 25% of the total ring impedance)
- all the Ion Clearing Electrodes (now responsible for about a 40% bunch lenghtening for e-)
- all the bellows (10% of the ring impedance)
- the injection and feedback kickers (now 30% of the ring impedance)
- the scrapers (10% of the ring impedance)
- the feedbacks cavities (15% of the ring impedance)

The new elements will be redisegned to be "very-low-impedance", the target impedance should be between 2 and 3 times smaller than the present one.

The positron chamber will also have an <u>antichamber</u> to minimize the <u>Electron Cloud</u> that seems a good candidate to explain the present strong horizontal instability and peak current limit for positrons. <u>Lower impedance</u> will also benefit the <u>beam stability in general</u>.

IR Upgrade

The IR optics, aimed at smaller β_y will be rebuilt with:

- smaller L* (= distance between IP and ^{1st} quadrupole)
- stronger quadrupoles (PM quads should suffice, although we could explore a SC solution as well)
- optimized geometry to increase the beam separation
- optimized mechanics for the rotation needed for the coupling compensation

With $\pm 10\sigma_x$ clearance, $\pm 9^\circ$ cone, ± 30 mrad angle:
QD1: L= 20 cm, pole radius = 1.5 cm, R _{ext} = 3 cm, pm thickness= 1.5 cm
QF2: L= 20 cm, pole radius = 11 cm, R _{evt} = 16 cm, pm thickness= 1.5 cm,
4 cm space between 2 guads
QD3: L= 20 cm, pole radius = 15 cm , R_{ext} = 63 cm, 25 cm space between 2 quads

10-13 September 2003

Alghero

Strategy and Logistic for DADNEUP

Minimize the down time after the end of the scheduled physics runs and the restart of the operations;

Minimize the recommissioning time;

Minimize the risks of failure;

Minimize the cost;

Optimize just ONE-IR-AND-ONE-ENERGY solution.

DAPTICE DESCRIPTION DAPTICE Upgrade for the energy up to 2.2GeV/CM or the luminosity $> 5 \ 10^{32}$ **(a)** Φ

	K Physics	Hyper-nuclei	Exotic atoms				
2004	1.5 10 ³²	10 ³²	10 ³²				
2007	>2 fb ⁻¹	1 fb ⁻¹	0.5 fb ⁻¹				
2008	SHUTDOWN						
2009	>5 10 ³²	>5 10 ³²	>5 10 ³²				
2013	>25 fb ⁻¹	5 fb ⁻¹	???				
	KLOE	FINUDA	SIDDHARTA				
Cost							
(M€)				20 Accel.			

Basic concepts for a brand new Φ- Factory aimed at L>4*10³³ The general strategy to increase the luminosity in the next generation factories is based on the alredy mentioned concepts:

- reducing the bunch lenght to the (few) mm scale;
- increasing the radiation damping (especially needed in low-Energy collider as a F-Factory);
- increasing the colliding currents (to ≈ 3 A and beyond);
- increasing the beam-beam limits by improving the machine tuning and/or implementing compensation schemes (such as crab crossing in collider with crossing angle)

The strategy is the same of that illustrated for the luminosity upgrade case, but the design can be much more aggressive on the critical parameters in a brand-new machine.

SUPERDAONE preliminary parameters

Energy	0.5 GeV	B _{dip} – B _{wig}	1.7 - 4 T
С	100 m	Uo	25 keV
L	<mark>2 – 7</mark> 10 ³³	V _{RF}	2.7 MV
f _{RF}	500 MHz		0÷2 MV
ε _x	3. 10 -7	α _c	-0.04 ÷ 0.04
β _x β _y	0.5 m 4 - 2 mm	σ _E /E	5 10-4
κ	0.005 – <mark>0.003</mark>	P _{rad}	50 kW
N _{bun}	150	σ _L	2 ÷ 4 mm
N [±] /bunch	2.5 10 ¹⁰ - 3.5 10 ¹⁰ (13 – 18 mA)	l_{th} (@Z/n=0.5Ω)	6.5 mA
ξχξγ	0.04 0.056 0.05 0.066	I _{tot}	1.9 - <mark>2.7</mark> A

TauCharm factory at LNF: Preliminary parameters

Energy	1.89 GeV	В	1.8 T
С	105 m	Uo	328 keV
L	10 ³⁴ cm ⁻² s ⁻¹	V _{RF}	2 MV
f _{RF}	500 MHz	V _{3RF}	2 MV
ε _x	<mark>1.5 10⁻⁷ μ</mark> m	α _c	0.022
β _x β _y	0.5 m - 5 mm	σ _E /E	8.7 10 -4
κ	0.003	P _{rad}	900 kW
N _{bun}	160	σL	6 mm
N [±] /bunch	3.5 10 ¹⁰	l _{th} (@Z/n=0.5Ω)	25 mA
ξχξγ	0.03 - 0.05	I _{tot}	2.7 A

Lattice of a τ-charm factory fitting the existing DAΦNE building

Time: Similar to Super-Dafne

Costs (Order of Magnitude):

100 M€ (Same for SuperDafne) (new injection system also included)

SUPERDAΦNE: new Φ-Factory for L > 4 10³³ or Tau-Charm Factory

	K Physics	Hyper-nuclei	Exotic atoms	1 ÷ 2.2 GeV physics			
2004	1.5 10 ³²	10 ³²	10 ³²				
2007	>2 fb ⁻¹	1 fb ⁻¹	0.5 fb ⁻¹				
2008	?????						
2009							
2010		SHUTDO	WN				
2011	>2 10 ³³	>2 10 ³³	>2 10 ³³	2 10 ³²			
2015	>40 fb ⁻¹	>15 fb ⁻¹	???	1 fb ⁻¹			
	KLOE	FINUDA	SIDDHART A	N-Nbar			
Cost (M€)	4	+20 (Linac & Dipoles)					