

B_s Oscillations and Prospects for Δm_s at the Tevatron

Stephanie Menzemer

Massachusetts Institute of Technology

for the CDF and D0 Collaboration

Tevatron

- Observe $p\bar{p}$ collisions with two detectors: CDF & D0
- First data taking period (Run I) 1992-1996
- Restarted data taking (Run II) in 2001 with major detector and accelerator upgrades

• Large production rates

 $\sigma(p\bar{p} \rightarrow bX, |y| < 0.6) \approx 18\mu b$ 10³ higher than at $\Upsilon(4S)$

- Heavy and excited B states currently uniquely at Tevatron: B_s, B_c, Λ_b, Ξ_b, B^{**}, B^{**}_s, ...
- But QCD background is 10³ higher than signal Triggers are critical.
- Event signature polluted by many fragmentation tracks;
 High precision vertex tracker + dedicated reconstruction algorithms needed

Trigger signatures: lepton (e, μ) and displaced tracks

- B decays to $J/\Psi \rightarrow \mu^+ \mu^-$
 - + muon provides easy trigger
 - small branching fraction
- Semi-leptonic B decays
 - + large branching rations ($\approx 20\%$)
 - missing neutrino
- Fully hadronic B decays
 - + $\approx 80\%$ of branching fraction
 - requires displaced track trigger

 \Rightarrow Di-Muon Trigger (CDF+D0)

⇒ Lepton Trigger (D0),+ Displaced Track (CDF)

CDF versus D0 Detector

CDF

- Displaced track trigger
- PID: TOF and dE/dx
- Excellent mass resolution

Strong in fully hadronic modes

D0

- Large muon coverage
- Very good forward tracking
- Strong in J/ψ modes Strong in semileptonic modes

- So far $V_{td}V_{tb}^*$ measured via Δm_d , suffers from large theoretical uncertainties, but $\Delta m_d / \Delta m_s$ related to CKM elements with 5% uncertainty only
- Δm_s required for measuring time dependent CPV in B_s system ($\rightarrow \gamma$)
- New physics may affect $\Delta m_s/\Delta m_d$

 B_s , uniquely available at Tevatron, provide 2 independent handles on Δm_s .

- Measuring B_s oscillation frequency: $\mathcal{A}_{mix}(t) \sim \mathcal{D} * cos(\Delta m_s t)$
- Measuring decay width difference $\Delta\Gamma_s$, clean relation with Δm_s (in SM):

$$\frac{\Delta m_s}{\Delta \Gamma_s} \approx \frac{2}{3\pi} \frac{m_t^2}{m_b^2} (1 - \frac{8}{3} \frac{m_c^2}{m_b^2})^{-1} h(\frac{m_t^2}{M_W^2})$$

- In B_s system CP violation is small ($\delta \Phi_s \approx 0$)
 - $\Rightarrow B_{s,light} = CP even$
 - $\Rightarrow B_{s,heavy} = CP \text{ odd}$
- Generally final states mixture of CP even and odd states but for Pseudoscalar \rightarrow VV, we can disentangle them. Has been already done for $B_d \rightarrow J/\psi K^{*0}$, apply same analysis now to $B_s \rightarrow J/\psi \phi$:
- Decay amplitudes decompose into 3 linear polarization states
 - $|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2 = 1$
 - $A_0, A_{\parallel} =$ S+D wave \Rightarrow CP even
 - $A_{\perp} = P$ wave $\Rightarrow CP$ odd
- Together with lifetime measurement, angular analysis can separate heavy and light mass eigenstates and determine $\Delta \Gamma_s \rightarrow \Delta m_s$ S. Menzemer

First have to reconstruct events, measure mass and lifetime:

Relative average lifetime of $B_s \to J/\psi \phi$ with respect to topological similar mode $B_d \to J/\psi K^*$:

 $\tau_s/\tau_d = 0.980^{+0.075}_{-0.070} \text{ (stat)} \pm 0.003 \text{ (syst)} \text{ (D0)}$ $\tau_s/\tau_d = 0.890 \pm 0.072 \text{ (total)} \text{ (CDF)}$

Angular Distributions

Then fit for angular distribution in transversity^{*} frame:

* See definition of transversity angles in backup slides

-0.8

Transversity

 $A_{\parallel} = (0.473 \pm 0.034 \pm 0.006)e^{(2.86 \pm 0.22 \pm 0.07)i}$

 $A_{\perp} = (0.464 \pm 0.035 \pm 0.007)e^{(0.15 \pm 0.15 \pm 0.06)i}$

 $A_0 = 0.750 \pm 0.017 \pm 0.012$

Cross check: $B_d \rightarrow J/\psi K^{*0}$

$$\tau_L = 1.05^{+0.16}_{-0.13} \pm 0.02 \text{ ps}$$

$$\tau_H = 2.07^{+0.58}_{-0.40} \pm 0.03 \text{ ps}$$

$$\Delta\Gamma_s/\Gamma_s = 0.65^{+0.25}_{-0.33} \pm 0.01$$

$$\Delta\Gamma_s = 0.47^{+0.19}_{-0.24} \pm 0.01 \text{ ps}^{-1}$$

$$\tau_{PDG} = 1.461 \pm 0.057 \text{ ps}$$

- With ≈ 200 signal events CDF finds a large value for the lifetime difference, ≈ 2.5 σ away from ΔΓ_s = 0
- About 2σ away from $\Delta\Gamma_s/\Gamma_s = 0.12$ (SM).
- $\Delta \Gamma_s$ results in $\Delta m_s = 125^{+65}_{-55}$ ps
- New Physics or just fluctuation?
- Tiny systematics! more data \rightarrow beautiful measurement
- Waiting for D0 result, soon to be released publicly

Towards B_s Mixing

Why is it so difficult? B_s mixing is very fast! In order to measure: $\mathcal{A}_{mix}(t) = \frac{N_{unmix}(t) - N_{mix}(t)}{N_{unmix}(t) + N_{mix}(t)}$ $= \mathcal{D} * cos(\Delta m_s t)$

We need to:

- Reconstruct B_s signal
 - hadronic modes: good p_T resolution but fewer events
 - semileptonic modes: high statistics, poor $p_T (\rightarrow c\tau)$ resolution
- Tag the production flavor: tagging power ϵD^2 Efficiency: $\epsilon = \frac{N_{wrong} + N_{right}}{N}$ Dilution: $\mathcal{D} = 1 - 2 \frac{N_{wrong}}{N_{wrong} + N_{right}}$

B Flavor Tagging

Opposite Side Tagging:

• Jet-Charge-Tagging:

sign of the weighted average charge of opposite B-Jet

• Soft-Lepton-Tagging:

identify soft lepton (e, μ) from semileptonic decay of opposite B: $b \rightarrow l^- X$ (BR $\approx 20\%$),

Dilution due to $\bar{b} \rightarrow \bar{c} \rightarrow l^- X$ and oscillation

• Kaon-Tagging:

due to $b \rightarrow c \rightarrow s$ it is more likely that a \overline{B} meson contains a K^- than a K^+ in the final state (particle ID)

Same Side Tagging:

• $B_{s/d}$ is likely to be accompanied close by a K^+/π^+ (particle ID)

Example of Tagged B_s **Candidate**

- Two same sign muons are detected: $B_s \to D_s \mu X, (D_s \to \phi(KK)\pi)$
- $M_{KK} = 1.019 \text{ GeV}, M_{KK\pi} = 1.94 \text{ GeV}$
- $p_T(\mu_{B_s}) = 3.4 \text{ GeV}, p_T(\mu_{tag}) = 3.5 \text{ GeV}$

About half of the B_s detected, have same flavor at production and decay.

D0 exploits high statistics muon trigger

semileptonic decays:worse proper time resolution, but high statistics $c\tau = \frac{L_{xy}}{\gamma\beta}; \gamma\beta = \frac{p_T(B)}{M(B)} = \frac{p_T(\ell D)}{M(B)} * K$ (K from MC); $\sigma_{c\tau} = \left(\frac{\sigma_{L_{xy}}}{\gamma\beta}\right) \oplus \left(\frac{\sigma_{\gamma\beta}}{\gamma\beta}\right) * c\tau$

D0 uses trigger muon in combination with other flavor tagging variables \rightarrow fully reconstructed decays.

where $D_s \to \Phi \pi, K^* K, 3\pi$

CDF uses hadronic modes: $B_s \rightarrow D_s \pi$ & semileptonic modes: $B_s \rightarrow \ell D_s X$

- For setting limit on Δm_s , knowledge of tagger performance is crucial \rightarrow measure tagging dilution in kinematically similar B^0/B^+ samples
- Δm_d and Δm_s fit is very complex, up to 500 parameters
 - combining several B flavor and several decay modes
 - combining several taggers
 - mass and lifetime templates for various backgrounds

 Δm_d measurement is very important to test the fitter

Δm_d Measurement

Combined taggers (semileptonic channels) D0 (250pb ⁻¹):

 $\Delta m_d = 0.456 \pm 0.034 {\rm (stat)} {\pm} 0.025 {\rm (syst)} ~{\rm ps}^{-1}$

Combined opposite side taggers (semileptonic channels) CDF (355 pb⁻¹):

 $\Delta m_d = 0.497 \pm 0.028 \text{(stat)} \pm 0.015 \text{(sys)} \text{ ps}^{-1}; \qquad \text{total } \epsilon D^2 : 1.43 \pm 0.09 \%$

Combined opposite side taggers (hadronic channels) CDF (355 pb^{-1}):

$\Delta m_d = 0.503 \pm 0.063 (\text{stat}) \pm 0.015 (\text{sys}) \text{ps}^{-1};$ total ϵD^2 :	1.12 ± 0.18 %
--	-------------------

$\epsilon D^2(\%)$	CDF semileptonic channels*	D0
$SST(B_d)$	$1.04 \pm 0.35 \pm 0.06$	1.00 ± 0.36
Soft μ	0.56 ± 0.05	1.00 ± 0.38
Soft e	0.29 ± 0.03	-
Jet-Q	0.57 ± 0.06	~ 1 (measured combined with SST)

* OST measured exclusively

For SST(B_s) have to understand MC before it can be used for Δm_s limit.

Amplitude Scan

- For infinite statistics, perfect taggers, optimal reconstruction, A should be zero for all Δm_s values but the correct one.
- Limit: a given value Δm_s is excluded @ 95% C.L., if $A(\Delta m_s) + 1.645 \cdot \sigma[A(\Delta m_s)] \leq 1$
- Sensitivity: smallest Δm_s value for which $1.645 \cdot \sigma[A(\Delta m_s)] = 1$
- Amplitude scan method allows easy combination among different measurements/experiments.

Winter 2004 summary (world average):

- Limit: $\Delta m_s \ge 14.5 \text{ ps}^{-1}$
- Sensitive up to $\Delta m_s = 18.3 \text{ ps}^{-1}$

What do we have to expect ...

- The limit can be lower or higher than the sensitivity reach
- Tevatron results will improve the sensitivity of the world average
- But if we are very unlucky, we might worsen the limit
- At lower luminosity the semileptonic modes will contribute more to limit/sensitivities at lower values of Δm_s
- The lower statistics hadronic modes will contribute more at higher values of Δm_s due to better proper time resolution.

- Tevatron experiments are in unique position to exploit B_s system to constrain/measure CKM elements
- First measurement of $\Delta \Gamma_s$ from CDF available, favors large values of Δm_s , but with large uncertainties
- $\Delta \Gamma_s$ measurement from D0 expected soon
- Δm_s mixing measurement/limit is a very complex analysis, CDF/D0 are almost ready
- Δm_d results are available
- Δm_s limits are coming soon

Backup

Tevatron performed very well in 2004:

- Peak lumi above $1 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$ (Run I peak lumi: $1 \times 10^{31} \text{cm}^{-2} \text{s}^{-1}$)
- Recorded integrated lumi: 0.5 fb⁻¹,
 350-400 pb⁻¹ good run data

 (all important detector subsystems working)
- Data taking efficiency about 80%

Luminosity Projections:

- Expected peak lumi $3 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$ by 2007
- Delivered luminosity $\approx 4-8 \text{ fb}^{-1}$ by end of 2009 (30-60 × more than Run I)

What is the origin of flavor symmetry breaking? \rightarrow quark mixing, CKM matrix

quark mass eigenstates

Goal: Measure sides/angles of CKM triangle sides in all possible ways

B decays measure 5 CKM elements

Transversity Angles

 $B_s \to J/\psi \phi$

Work in J/ψ rest frame

KK plane defines (x,y) plane ϕ defines x axis K^+ defines +y direction

 Θ, Φ polar azimuthal angles of μ^+ Ψ helicity angle of ϕ

Same Side Tagging

some of the possible species of particles produced in the fragmentation of

a *b* quark to a *B* meson.

S. Menzemer

B_s Mixing Sensitivity

Modes used for projection:

CDF baseline:

A little bit further away ...

Further improvements ongoing:

- add more modes
- improve taggers (PID for SST)

 $B \rightarrow h^+ h^-$

 $B \rightarrow h^+h^-$: Ingredient for measurement of CP asymmetry and CKM angle γ

Need to measure many modes to get rid of hadronic uncertainties.

- Exploit Two Track Trigger sample
- 4 major expected modes overlap to form a single bump
 - $B_d \to K^+ \pi^-$
 - $B_s \to K^+ K^-$
 - $B_d \to \pi^+ \pi^-$
 - $B_s \to \pi^+ K^-$

Signal: 893 ± 47 , S/B>2

Approach: use mass + kinematic variable + track PID in an unbinned Maximum Likelihood fit \rightarrow extract the fraction of each component

Mass ($\pi\pi$ hypothesis) versus signed momentum imbalance $\alpha = (1 - \frac{p_1}{p_2}) * q_1$; p: momentum, q: charge, index 1/2 refer to the low/high momentum track

• $\bar{B}_s \rightarrow K^+ \pi^-$ • $B_s \rightarrow K^- \pi^+$ • $\bar{B}_d \rightarrow K^- \pi^+$ • $B_d \rightarrow K^+ \pi^-$ • $B_s \rightarrow K^+ K^-$ • $B_d \rightarrow \pi^+ \pi^-$

Kaon/Pion separation from dE/dx in the drift chamber: $1.4\sigma (p_T \ge 2 \text{ GeV/c})$

calibration via $D^* \to \pi D^0 \to \pi h^+ h^-$

Improvement expected by including time-of-flight as well: $1.4\sigma \rightarrow 1.6\sigma$

TOF separation

dE/dx separation

combined TOF+dE/dx separation

$$\sqrt{(TOF \ sep)^2 + (dE/dx \ sep)^2}$$

$B \rightarrow h^+h^-$: Results

B_d sector

Fit Result

- $\frac{BR(B_d \to \pi^+ \pi^-)}{BR(B_d \to K^+ \pi^-)} = 0.24 \pm 0.06 \pm 0.04$ Ratio of B_d BR consistent with other experiments
- $A_{CP}(B_d \to K^+\pi^-) = -0.04 \pm 0.08 \pm 0.01$ $A_{CP} = -0.133 \pm 0.03 \pm 0.009$ (Babar), $A_{CP} = -0.088 \pm 0.03 \pm 0.013$ (Belle) A_{CP} results compatible with Babar/Belle.

Analysis is still statistically limited.

 B_s sector (unique to Tevatron):

- $BR(B_s \to K^+K^-) =$ • $0.50 \pm 0.08 \pm 0.07 * BR(B_d \to K\pi) * (f_s/f_d)$
- $BR(B_s \to K\pi) < 0.11 * BR(B_d \to Kpi) * (f_s/f_d)$

Next steps

- Measure CP asymmetry in B_s system
- Measure CKM angle γ