Recent Results on Charmonium Physics at BES

Gang LI For BES Collaboration IHEP, Beijing,100049,China

Results and perspective of particle physics 19th Rencontre de Physique de la Vallee d'Aost

Mar. 2nd, 2005, La Thuile

Outline

BESII Detector and Data

* κ and σ study at BES

* Test of pQCD 12% rule at BES

BESII Detector and Data

κ and σ study at BES

There has been much argument whether σ and κ exist, experimental knowledge on the light scalars is very important to the understanding of QCD in the non-perturbative region.

The BESII data have much higher statistics, and lead to a much more decisive partial wave analysis.

 κ in J/Ψ \rightarrow K⁺ π ⁻ K ⁻ π ⁺

Events over all of 4-body phase space have been fitted to the following channels:

- $\odot \ J/\psi \to K^*(892)K_0^*(1430), \ K^*\kappa, \ K^*K_2^*(1430), \ K^*K_0^*(1950);$
- $\odot J/\psi \to K_1(1400)K, \ K_1(1270)K;$
- $\odot \ J/\psi \to K_0^*(1430)\kappa, \ K_0^*(1430)K_0^*(1430), \ K_2^*(1430)K_0^*(1430);$
- $J/\psi \rightarrow \rho a_0(980), \ \rho a_2(1320), \ \rho a_2(1700), \ \rho a_2(1990), \ \rho a_2(2270).$ ρ (770)

к in J/Ψ→K*(892)⁰ K⁻π⁺

Two independent PWA by Method A and B have been performed :

 $⊙ J/ψ → K^*(892)K_0^*(1430), K^*κ, K^*K_2^*(1430), K^*K_2^*(1922);$ $⊙ J/ψ → K_1(1400)K, K_1(1270)K.$

Two methods produce similar results: K is needed.

The averaged value for κ pole position is:

 $(841 \pm 78^{+81}_{-73}) - I(309 \pm 91^{+48}_{-72})MeV$

κ in J/Ψ→K*(892)⁰ K⁻π +(Con't) Method A Method B 10 MeV/bin 8 8 ĸ 400 300 200 100 8.0 M_{K⁺ x⁻ (GeV / c²)} G.7.0 1.20 1.0 a) K₁(1270), K₁(1400) 10 MeVbin 200 2 50 Oversit 2 RAMA 200 1.00 100 20 0 M_K²(002)⁰ ² (GeV/c²) 1.2 1.4 1.0 M co 15mM d) c)

σ **B-W** parameterizations

• (a). from PDG

$$BW_{\sigma}(s,m,\Gamma) = \frac{1}{m^2 - s - im\Gamma_{const.}}$$

• (b). B. Hyams et al., Nucl. Phys. B64(1973), 134

$$BW_{\sigma}(s,m,\Gamma) = \frac{G_{\sigma}}{m^2 - s - im\Gamma_{tot}(s)} , \quad \Gamma_{tot}(s) = g_1 \frac{\rho_{\pi\pi}(s)}{\rho_{\pi\pi(m^2)}} + g_2 \frac{\rho_{4\pi}(s)}{\rho_{4\pi}(m^2)} , \dots$$

 \bullet (c). E.M Aitala et al., Phys. Rev. Lett. 86(2001)770

$$BW_{\sigma}(S,m,\Gamma) = \frac{1}{m^2 - s - im\Gamma_{\sigma}(s)} , \quad \Gamma_{\sigma}(s) = \frac{g_{\sigma}^2 \sqrt{\frac{s}{4}} - m_{\pi}^s}{8\pi s}$$

• (d). H.Q. Zheng et al., Nucl. Phys. A733(2004)235

$$BW_{\sigma}(S,m,\Gamma) = \frac{1}{m^2 - s - im\Gamma_{\sigma}(s)} , \quad \Gamma_{\sigma}(s) = \alpha \sqrt{\frac{s}{4} - m_{\pi}^s}$$

σ in J/Ψ→ ω π⁺π⁻ (Method I)

Channels fitted to the data: J/ψ→ωf₂(1270) ωσ ωf₀(980) **b**₁(1235)π ρ**'(1450)**π f₂(1565)ω f₂(2240)ω

σ in $J/\Psi \rightarrow \omega \pi^+ \pi^-$ (Method II)

Channels fitted to the data: $J/\psi \rightarrow \infty f2(1270)$ $\omega \sigma$ $\omega f0(980)$ $b1(1235)\pi$ phase-space

2+

Fit results:

	B-W parameterization		Pole Position (MeV)	
	(a)		$(542 \pm 7 \pm 20) - i(269 \pm 15 \pm 25)$	
Method I	(b)	$(542 \pm 7 \pm 15)$	$\pm 30(extrap)) - i(249 \pm 15 \pm 20 \pm 30(extrap))$	
	(c)		$(570 \pm 7 \pm 19) - i(274 \pm 14 \pm 22)$	
	B-W parameterization		Pole Position (MeV)	
	(a)		$(512^{+16+36}_{-13-31}) - i(252^{+14+40}_{-9-33})$	
Methoa II	(c)		$(558^{+14+42}_{-17-46}) - i(231^{+12+58}_{-14-45})$	
	(d)		$(521_{-18-49}^{+19+44}) - i(237_{-7-36}^{+6+33})$	
Averaged pole position:				

 $(541\pm39) - i(252\pm42)$ MeV

σ in Ψ(2S)→ π + π - J/Ψ

Cos θ of π +

σ in Ψ(2S) $\rightarrow \pi^+\pi^-$ J/Ψ(cont.)

Fit results show:

- A strong destructive interference between σ and B.G.,
- 2⁺ contribution is small.

pole position is consistent with J/Ψ	$(541\pm39) - i(252\pm42)$ MeV(J/ Ψ)
BW parameteration	pole position(MeV)
(a)	$(553 \pm 15 \pm 47) - i(254 \pm 23 \pm 54)$
(c)	$(559 \pm 6 \pm 26) - i(179 \pm 7 \pm 17)$
(d)	$(554 \pm 13 \pm 66) - i(240 \pm 4 \pm 20)$

Test of pQCD 12% Rule at BES

Test of pQCD 12% Rule(con't)

Theoretical explanations: • Brodsky, Lepage, Tuan: { PRL 59 (1987) 621 } Intermediate vector glueball • Chaichian & Torngvist : { NP B323 (1989) 75 } Hadronic form factor · Pinsky : { PL B236 (1990) 479 } Generalized hindered M1 transition · Li-Bugg-Zou { PR D55 (1997) 1421 } **Final-state interaction** Brodsky-Karliner { PRL 78 (1997) 4682 } Intrinsic charm |qqcc> Fock components of the light vector mesons

...

Test of pQCD 12% Rule (con't)

Measure the BRs of $\psi(25)$ & corresponding Q values

for 10 VP channels,

1 PP channel,

to test pQCD 12% rule.

VP Mode

- PWA for $\psi(2S) \rightarrow \pi^+ \pi^- \pi^0$
- BRs for $\psi(2S) \rightarrow K^*K$
- BRs for ψ(2S)→(ρ,ω,φ)(π,η,η')

measured

 Background from continuum considered using Ecm=3.65 GeV data sample

VP Mode (Con	'†)
--------------	------------

 $\rho \pi$ (Con't)

Results on BRs

$BR(\Psi(2S) \rightarrow)$	BESII (10^{-5})	PDG04 (10 ⁻⁵)
π + π - π^0	$18.1 \pm 1.8 \pm 1.9$	8 ± 5
ρπ	$\textbf{5.1} \pm \textbf{0.7} \pm \textbf{0.8}$	< 8.3
ρ (2150) π → π+ π- π ⁰	19.4 ± 2.5 $^{+11.2}_{-2.1}$	

Interference taken into account

hep-ex/0407037, submitted to PLB

VP Mode (Con't)

EM Process: ωπ⁰,ρη,ρη' at Ecm=3650,3686,3773 MeV

For EM processes at continuum e+e- \rightarrow (VP) $\omega \pi^0$, $\rho \eta$, $\rho \eta'$

$$\sigma_{\text{Born}}(s) = \frac{4\pi\alpha^2}{s^{3/2}} \cdot |\mathcal{F}_{VP}(s)|^2 \cdot \mathcal{P}_{VP}(s),$$

 $P_{vp}(S)=q_{vp}^{3}/3;$ q_{vp}^{3} - momentum of V or P; $F_{vp}(s)$ - form factor ;

For EM processes at $\Psi(2S) \rightarrow (VP) \omega \pi^0$, $\rho \eta$, $\rho \eta'$

 $\sigma = \sigma^{R} + \sigma^{cont}$ ($\sigma^{INT} \approx 0$, P.Wang et al, PL B593 (2004) 89)

VP Mode (Con't)

EM Process: ωπ⁰,ρη,ρη' at Ecm=3650,3686,3773 MeV

PRD70 (2004) 112007

Ecm=3650 MeV $L = 6.42 \text{ pb}^{-1}$

Ecm=3686 MeV
N
$$_{\Psi(2S)} = 19.8 \text{pb}^{-1}$$

M Pro at E	cess: ωπ ⁰ Ecm=3650,3	,ρη,ρη' 3686,3773 Μe	:V		
F	vp(S) and	B(Ψ (2S) →	ν <mark>Ρ) for</mark> ωα	<mark>π⁰,ρη,ρη'</mark>	
PRD70 (2004) 112007					
State	Ecm(GeV)	$\sigma_{Born}(pb)$	$ F_{vp} $ (GeV ⁻¹)	$B_{\psi(2S)\rightarrow VP}(\times 10^{-5})$	
	3.650	$24.3^{+11.0}_{-9.0} \pm 4.3$	$0.051_{-0.10}^{+0.12}$		
$\omega\pi^0$	3.686	$19.2^{+6.3}_{-5.7}\pm2.9$	$0.045\substack{+0.008\\-0.007}$	$1.87^{+0.68}_{-0.62} \pm 0.28$	
	3.773	$10.7^{+5.0}_{-4.1} \pm 1.7$	$0.034^{+0.008}_{-0.007}$		
	3.650	$8.1^{+7.4}_{-4.9}\pm1.1$	$0.030^{+0.014}_{-0.009}$		
$\rho\eta$	3.686	$18.4^{+8.6}_{-7.8}\pm1.9$	$0.046^{+0.011}_{-0.010}$	$1.78^{+0.67}_{-0.62} \pm 0.17$	
	3.773	$7.8^{+4.4}_{-3.5}\pm0.08$	$0.030^{+0.009}_{-0.007}$		
	3.650	< 89	< 0.192		
$ ho\eta'$	3.686	$18.6^{+15.4}_{-10.3} \pm 3.6$	$0.050\substack{+0.021\\-0.015}$	$1.87^{+1.64}_{-1.11} \pm 0.33$	
	3.773	< 28	< 0.106		

BESII vs.*CLEO* (ψ' **BRs Results**)

Upper limit @90% C.L.

 Most channels BRs are consistent.

BES BR(ρπ)
 > CLEO ,
 because PWA
 takes into
 account the
 interference.

CLEO BRs from P.R.L.94:012005,2005

PRD69 (2004) 012003 $J/\Psi \rightarrow K_{s} K_{L}$

PP Mode (Con't)

$$B_{\psi(2S) \to K_{S}K_{L}} = (5.24 \pm 0.47 \pm 0.48) \times 10^{-5}$$
1st measurement
$$B_{J/\psi \to K_{S}K_{L}} = (1.82 \pm 0.04 \pm 0.13) \times 10^{-4}$$

$$\frac{B_{\psi(2S) \to K_{S}K_{L}}}{B_{J/\psi \to K_{S}K_{L}}} = (28.8 \pm 4.3)\%$$

$$\frac{B_{\psi(2S) \to K_{S}K_{L}}}{B_{J/\psi \to K_{S}K_{L}}} = 12\%$$

$$B(\Psi(2S)) \text{ enhanced!}$$

TI

σ and κ have been carefully studied with PWA method.

- # Evidence for the κ as a peak close to the threshold. The pole position was determined.
- # The σ peak is clearly seen in $J/\Psi \rightarrow \omega \pi^+ \pi^-$

we can get the same pole parameters from $\Psi' \rightarrow \pi^+ \pi^- J/\Psi$ process even though there is no obvious σ peak. SUMMARY (Con't)

- # Measurements for BRs or upper limits of VP channels: $\psi' \rightarrow (\rho, \omega, \phi)(\pi, \eta, \eta'), K^*\overline{K}$
- # In $\psi' \rightarrow 3\pi$, $\rho(770)$ & $\rho(2150)$ dominant.
- # Large isospin-violation in $\psi' \rightarrow K^* \overline{K}$ channel.
- # First measurement for BR of Ψ (25) \rightarrow K₅ K_L;
- # 12% rule tested for all these decay modes. some suppressed, some enhanced, some consistent.
- # 12% rule seems to be too simplistic.

SUMMARY (Con't)

Thanks a lot!

 σ in $\Psi(2S) \rightarrow \pi^+ \pi^- J/\Psi(cont.)$

Large cancellation: example

chiral symmetry and so called Alder Zero require the amplitude to be vanish near the threshold, then there must be such a cancellation.

Details in :

hep-ph/0308308

<i>VP</i> K*(892	Mode (Co ?)K (Con't)	n't)		
BRs of Comparison	(Upper limit @90	0% C.L.)		
EXP	B(ψ'→ ρ π) (×10 ⁻⁵)	Q (ρ π) (%)	B(ψ'→ K ⁺ K ^{*-} +cc) (×10 ⁻⁵)	Q (K ⁺ K ^{*-}) (%)
MK II	< 8.3	< 0.65	< 5.4	< 1.1
BES I *	< 2.9	< 0.23	< 3.2	< 0.64
BES II	5.1 ±0.6 ± 0.7**	0.40 ±0.08**	$2.9 \pm 1.4 \pm 0.4$	0.58 ±0.29
 * Y.S.Zhu, Proc. Ichep 96, p.507 ** BES II . PWA takes into account ρ(770), excited ρ states & their interferencies. 				

1 ac

VP Mode (Con't)

 $\rho \pi$ (Con't)

EM Process: ωπ⁰,ρη,ρη' at Ecm=3650,3686,3773 MeV

Form factor for Ψ (2S) $\rightarrow \omega \pi^0$

Curve A -- J.Gerard, PLB425(1998)365 F(ωπ⁰) ~ 1/S

Curve B -V.Chernyak, hep-ph/9906387 F(ωπ⁰) ~ 1/5²

71.49

BES-II BES-II $B_{\psi' \to X} = \frac{n_{\psi' \to X \to Y}^{obs}}{N_{\psi'} \cdot B_{X \to Y} \cdot \epsilon^{MC}}$			
VT mode	B _ψ , →X (10 ⁻⁴) (BES-II)	B _{J/ψ→X} (10 ⁻³) (PDG2004)	Q _h (%)
ω f ₂	2.05± 0.41 ± 0.38	4.3±0.6	4.8±1.5
ρ a 2	$2.55 \pm 0.73 \pm 0.47$	10.9±2.2	2.3±1.1
$\mathbf{K}^* \mathbf{K}^*_2$	1.86± 0.32 ± 0.43	6.7±2.6	2.8±1.3
φ f ₂ '	0.44 ± 0.12± 0.11	1.23±0.21 †	3.6±1.5

† This value from DM2 only

PR D69 (2004) 072001

Suppressed!!