

Les Rencontres de Physique de la Vallée d'Aoste, La Thuile, Feb 27 – Mar 5 2005

### **Overview**

- CKM Matrix and the Unitarity Triangle
- Overview of BaBar Detector
- Analysis Techniques
  - Time dependent CP analysis
  - Discriminating variables
- Measuring  $\beta$
- Measuring  $\alpha$
- Measuring  $\gamma$
- Conclusions

**Thomas Latham** 

### **CKM Matrix and the Unitarity Triangle**

- Cabibbo-Kobayashi-Maskawa mixing matrix
  - relates weak (q') and mass
     (q) eigenstates
- Wolfenstein parameterisation
  - 4 parameters A, λ, ρ, η
  - CP violation from imaginary parameter η
- Unitarity Relation  $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ 
  - represented as a triangle
  - sides of same order
  - area proportional to amount of CP violation

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\begin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

 $(0,\eta)$ 

$$dV_{tb}^{*} = 0$$

$$V_{ub}^{*} V_{ud}$$

$$V_{cd} V_{cb}^{*}$$

$$\gamma$$

$$\beta$$

$$(0,0)$$

$$(1,0)$$





THE UNIVERSITY OF

4

#### **Thomas Latham**

## **Time Dependent Formalism**

One *B* meson is fully reconstructed in a *CP*-eigenstate.

The time difference ( $\Delta t$ ) between the two *B* decays must be known as well as the flavour of the reconstructed *B* at the time of the other *B*'s decay.



#### Thomas Latham



5

## **Time Dependent Analysis**



#### **Thomas Latham**

# **Analysis Variables – Topological**

- Light quark continuum cross section ~3x bb
- *B* mesons produced almost at rest since just above threshold
- Use event topology to discriminate
- Combine variables in a Fisher discriminant or neural network



### **Analysis Variables – Kinematic**

Make use of precision kinematic information from the beams.



**Thomas Latham** 

## CKM Angle $\beta$

- sin(2β) well measured in charmonium modes – only 1 weak phase, clean measurement
- Looking for new physics measuring sin(2β) in b → s "penguin" loop modes: φK<sup>0</sup><sub>S</sub>, K<sup>0</sup><sub>S</sub>K<sup>0</sup><sub>S</sub>K<sup>0</sup><sub>S</sub> etc.
- Also measure cos(2β) in order to resolve the 4-fold ambiguity

### $\sin(2\beta) = 0.722 \pm 0.040 \pm 0.023$

BaBar result from 227 million  $B\overline{B}$  pairs (combined fit to all charmonium modes)



#### Thomas Latham

hep-ex/0408127

### $sin(2\beta)$ in $B^0 \rightarrow \phi K^0$ & $B^0 \rightarrow K^+ K^- K^0_S$ (preliminary)

$$B^0 \to \phi K^0$$

- Combination of K<sub>S</sub> and K<sub>L</sub> modes
- 227 million *BB* pairs
- 1<sup>st</sup> error statistical, 2<sup>nd</sup> systematic

$$B^0 \to K^+ K^- K^0_S$$

- Consider whole Dalitz plot excluding \u03c6 region (15MeV)
- Moments analysis using sPlots technique (physics/0402083) determines the *CP*-even fraction:  $f_{CP-even} = 0.89 \pm 0.08 \pm 0.06$

 3<sup>rd</sup> error from CP-even fraction uncertainty  $\sin(2\beta_{eff}) = 0.50 \pm 0.25^{+0.07}_{-0.04}$  $C_{\phi K^0} = 0.00 \pm 0.23 \pm 0.05$ 



hep-ex/0502019 submitted to PRD-RC

10

## $sin(2\beta)$ in $B^0 \rightarrow K^0_S K^0_S K^0_S$ (preliminary)

- Like  $B^0 \rightarrow \phi K^0_S$  has been noted to have small theoretical uncertainty
- Pure CP-even state
- Requires beam-spot constraint vertexing
- Results with 227M  $B\overline{B}$  pairs:
  - $BF = (6.9^{+0.9}_{-0.8} \pm 0.6) \times 10^{-6}$
  - $S = -0.71^{+0.38}_{-0.32} \pm 0.04$
  - $C = -0.34^{+0.28}_{-0.25} \pm 0.05$
- Assuming single penguin amplitude (C = 0):

 $\sin\left(2\beta_{eff}\right) = 0.79^{+0.29}_{-0.36} \pm 0.04$ 



hep-ex/0502013 submitted to PRL

THE UNIVERSITY OF

# $sin(2\beta)$ Comparison

- Compare tree and penguin decays
- BaBar alone:  $\Delta \sin(2\beta) \sim -2.9\sigma$
- BaBar+Belle:  $\Delta \sin(2\beta) \sim -3.7\sigma$



Thomas Latham

THE UNIVER

# $\cos(2eta)$ from $B ightarrow J/\psi(K\pi)_{_{\mathrm{P-wave}}}$ (preliminary)

C Moment

- B→VV decays proceed through 3 partial waves, L=0,2 (CP-even) and L=1 (CP-odd)
- $\cos(2\beta)$  appears in the interference
- Angular analysis allows separation of partial waves
- Sign of cos(2β) still ambiguous when P-wave is considered on its own...
  - Broad S-wave also present [Nucl. Phys. B296, 493 (1988)]
  - Include this amplitude and examine the phase motion
  - Only one solution shows physical phase behaviour
- $\cos(2\beta)$  positive at 86% CL
- Result from 88M BB pairs more data to add!!



hep-ex/0411016 submitted to PRD

# CKM Angle $\alpha$

- Measured in  $B \rightarrow \pi \pi$ ,  $\rho \pi$  and  $\rho \rho$
- Tree and penguin diagrams present:
- Measure  $\alpha_{\rm eff}$  instead of  $\alpha$

$$C_{hh} = 0$$
  

$$S_{hh} = \sin(2\alpha)$$

$$C_{hh} \propto \sin(\delta)$$
  

$$\delta = \delta_P - \delta_T$$
  

$$S_{hh} = \sqrt{1 - C_{hh}^2} \sin(2\alpha_{eff})$$

- Need to bound the shift  $|\alpha_{eff} \alpha|$
- Penguin:Tree ratio different for different decays

# Untangling $\alpha_{eff}$

- Use isospin symmetry to relate the decay rates:
  - Triangles for  $\pi\pi/\rho\rho$
  - Pentagons for  $\rho\pi$
- Making fewest assumptions gives the bound:

$$\sin^{2}(\alpha_{eff} - \alpha) < \frac{BF(B^{0} \to \pi^{0}\pi^{0})}{BF(B^{\pm} \to \pi^{\pm}\pi^{0})}$$



#### Thomas Latham

### $\alpha$ in $B \rightarrow \pi\pi$ (preliminary)

All results use 227M  $B\overline{B}$  pairs except  $\pi^{+}\pi$  BF which uses 97M



hep-ex/0412037 submitted to PRL

16

# $B \rightarrow \rho^+ \rho^-$ (89M $B\overline{B}$ pairs)

- VV final state
- Requires angular analysis to untangle different CP states



- Longitudinal part in  $\rho^+ \rho^-$  system measured to be:  $f_L = 0.99 \pm 0.03 \pm 0.04$
- *CP*-even component dominates
- Branching fraction measured to be:  $BF = (30 \pm 4 \pm 5) \times 10^{-6}$

Phys. Rev. Lett. 93 (2004) 231801



# $\alpha$ in $B \rightarrow \rho \rho$ (preliminary)

• 
$$B^{0} \rightarrow \rho^{+} \rho^{-}$$
 hep-ex/0407051  
•  $S_{\rho^{+}\rho^{-}} = -0.19 \pm 0.33 \pm 0.11$   
•  $C_{\rho^{+}\rho^{-}} = -0.23 \pm 0.24 \pm 0.14$   
•  $B^{0} \rightarrow \rho^{0} \rho^{0}$  hep-ex/0408061  
•  $BF < 1.1 \times 10^{-6}$   
•  $BF < 1.1 \times 10^{-6}$   
•  $BF = (26.4^{+6.1}_{-6.4}) \times 10^{-6}$   
•  $f_{L} = 0.96^{+0.05}_{-0.07}$   
 $\alpha = (96 \pm 10 \pm 4 \pm 11)^{\circ}$ 

**Thomas Latham** 

THE UNIVER

WARWICK

Y OF

# $\alpha$ in $B^0 \rightarrow (\rho \pi)^0$ (preliminary)

- $\rho^{\pm}\pi^{\mp}$  not a *CP* eigenstate
- Previous analyses have selected out the  $\rho\pi$  bands from the Dalitz plot and removed the interference regions
- Better to do an amplitude analysis



**Thomas Latham** 

Extract  $\alpha$  & strong phases using interference between amplitudes

Dalitz plot dominated by  $\rho^+\pi^-$ ,  $\rho^-\pi^+$ ,  $\rho^0\pi^0$  and radial excitations

Analysis uses 213M  $B\overline{B}$  pairs

1184 ± 58 signal events



## $\alpha$ in $B^0 \rightarrow (\rho \pi)^0$ (preliminary)

- *CP* violating observables:
  - $A_{CP} = -0.088 \pm 0.049 \pm 0.013$
  - $S_{\rho\pi} = -0.10 \pm 0.14 \pm 0.04$
  - $C_{\rho\pi} = 0.34 \pm 0.11 \pm 0.05$
- Non-CP observables:
  - $\Delta S = 0.22 \pm 0.15 \pm 0.03$
  - $\Delta C = 0.15 \pm 0.11 \pm 0.03$
  - $\delta_{+-} = \left(-67^{+28}_{-31} \pm 7\right)^{\circ}$

$$\alpha = \left(113^{+27}_{-17} \pm 6\right)^{\circ}$$



**Thomas Latham** 

hep-ex/0408099

#### Thomas Latham

### Combined Constraints on $\alpha$

- Combine all  $\alpha$  results
- Compare with global CKM fit
- *α* is measured
- Mirror solutions disfavoured

$$\alpha = (103^{+11}_{-10})^{\circ}$$



# **CKM Angle** $\gamma$

• Access  $\gamma$  through direct *CP*-violation in the interference of diagrams with  $b \rightarrow u\bar{c}s$  and  $b \rightarrow c\bar{u}s$ 





- Reconstruct  $D^{(*)0}$  and  $\overline{D}^{(*)0}$  in the same final state
- Charged B's time independent measurement
- Amplitudes have relative weak phase of  $\gamma$

c.f. neutral B's  $\rightarrow 2\beta + \gamma$ hep-ex/0408038

• Need to also determine the relative strong phase ( $\delta_B$ ) and ratio of magnitudes of the two diagrams:

$$r_{B} = \frac{\left| A \left( B^{+} \to D^{0} K^{+} \right) \right|}{\left| A \left( B^{+} \to \overline{D}^{0} K^{+} \right) \right|}$$

Expected to be ~ 0.1 - 0.2Sensitivity to  $\gamma$  dependent on size of  $r_B$ .

#### Thomas Latham

# **D<sup>0</sup> to 3-body Dalitz Method**

- Choose  $D^0$  decay to 3-body state  $K_{\rm S}\pi^+\pi^-$
- Dalitz analysis of the  $D^0$  decay with isobar model fixes the phase variation  $\delta_D$  across the Dalitz plot
  - Use high stats D<sup>\*+</sup> sample
  - Assume no D mixing or CP violation in the D decays
- Fixing the  $D^0$  model, fit simultaneously to  $B^+$  and  $B^-$  samples to determine  $\gamma$ ,  $r_B$  and  $\delta_B$



**Thomas Latham** 

### **D<sup>0</sup> Dalitz Method Preliminary Results**

• Results from 211M  $B\overline{B}$  pairs

• 
$$r_B < 0.19$$
  
•  $\delta_B = (114 \pm 41 \pm 8 \pm 10)^\circ$ 

• 
$$r_B^* = 0.155_{-0.077}^{+0.070} \pm 0.040 \pm 0.020$$
  
•  $\delta_B^* = (303 \pm 34 \pm 14 \pm 10)^\circ$ 

$$\gamma = (70 \pm 26 \pm 10 \pm 10)^\circ$$

3<sup>rd</sup> error due to uncertainty on Dalitz model



THE UNIVER

WARWICK

#### **Thomas Latham**

hep-ex/0408088

### Conclusions

- BaBar producing great number of measurements
  - Well measured in charmonium modes
  - Comparison with b→s penguin modes shows possible indication of potential new physics – more statistics required
- Ο

β

- Measurements from three modes:  $\pi\pi$ ,  $\rho\pi$ ,  $\rho\rho$
- Constraint dominated by  $\rho\rho$  and  $\rho\pi$
- γ
  - Many possible approaches
  - Dalitz analysis of *D*<sup>0</sup> decay most sensitive at present
  - Greater statistics essential for this measurement
  - Development of further methods in pipeline

## **Backup Slides**



#### **Thomas Latham**





**Thomas Latham** 

# **GLW and ADS methods for** $\gamma$

### Gronau, London, Wyler

- Reconstruct both  $D^0 / \overline{D}^0$  in decays to *CP* eigenstates
- Compare decay rates of B<sup>+</sup> and B<sup>-</sup> to both CP-even and CP-odd final states of the D
- Four observables determine the three unknowns  $\gamma$ ,  $r_B$  and  $\delta_B$
- Significant signals observed in several modes
- Only loose bound on r<sub>B</sub> possible with current statistics

• 
$$r_B^2 = 0.24 \pm 0.23$$

#### Atwood, Dunietz, Soni

- Reconstruct  $D^0 / \overline{D}^0$  in decay to  $(K\pi)^0$
- Both *D* flavours can decay to kaons of either charge – again four observables
- Two further parameters:  $r_D$ , the ratio of the *D* decay magnitudes and  $\delta_D$  their relative strong phase
  - *r<sub>D</sub>* has been measured:
     0.060 ± 0.003
  - but  $\delta_D$  is unknown
- No significant signals observed in 227M BB pairs
- $r_{B} < 0.23 @ 90\% CL$

#### Small value of $r_B$ will make extraction of $\gamma$ by these methods difficult.