Unitarity Triangle Angle Measurements at BaBar

Les Rencontres de Physique de la Vallée d'Aoste, La Thuile, Feb 27 - Mar 52005

Overview

- CKM Matrix and the Unitarity Triangle
- Overview of BaBar Detector
- Analysis Techniques
- Time dependent CP analysis
- Discriminating variables
- Measuring β
- Measuring α
- Measuring γ
- Conclusions

CKM Matrix and the Unitarity Triangle

- Cabibbo-KobayashiMaskawa mixing matrix
- relates weak (q') and mass (q) eigenstates

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \cdot\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

- Wolfenstein
parameterisation
- 4 parameters A, λ, ρ, η
- $C P$ violation from imaginary

$$
\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$ parameter η

- Unitarity Relation $V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$
- represented as a triangle
- sides of same order
- area proportional to amount of $C P$ violation

$(0,0)$

The BaBar Detector

Time Dependent Formalism

One B meson is fully reconstructed in a $C P$-eigenstate.
The time difference ($\Delta \mathrm{t}$) between the two B decays must be known as well as the flavour of the reconstructed B at the time of the other B 's decay.

Time Dependent Analysis

Time evolution of B^{0} / \bar{B}^{0} asymmetry：

$$
\begin{array}{rlrl}
A_{f_{C P}}(\Delta t) & =\frac{\Gamma\left(\bar{B}^{0} \rightarrow f_{C P}\right)-\Gamma\left(B^{0} \rightarrow f_{C P}\right)}{\Gamma\left(\bar{B}^{0} \rightarrow f_{C P}\right)+\Gamma\left(B^{0} \rightarrow f_{C P}\right)} & \Delta m_{d} & =0.502 \pm 0.006 \mathrm{ps}^{-1} \\
& =\eta S_{f_{C P}} \sin \left(\Delta m_{d} \Delta t\right)-\eta C_{f_{C P}} \cos \left(\Delta m_{d} \Delta t\right) & \eta=+1(-1) \text { for } B^{0}\left(\bar{B}^{0}\right)
\end{array}
$$

$S_{f c p}=\frac{2 \operatorname{Im}\left(\lambda_{f_{c p}}\right)}{1+\left|\lambda_{f_{c P}}\right|^{2}}$
$S \neq 0: C P V$ in interference between mixing and decay

$$
C_{f_{C P}}=\frac{1-\left|\lambda_{f_{C P}}\right|^{2}}{1+\left|\lambda_{f_{C P}}\right|^{2}}
$$

$C \neq 0$ ：Direct CPV

Coefficient S sensitive to CKM angles：

Only 1 decay amplitude：
－$C_{f_{C P}}=0$
－$S_{f_{c p}}=\operatorname{Im}\left(\lambda_{f_{c p}}\right)$
－e．g．$=\sin (2 \beta)$
＞ 1 decay amplitude：
－$C_{f_{c p}} \neq 0$
－$S_{f_{c p}}$ not trivially related to CKM angles
－e．g．$=\sin \left(2 \alpha_{\text {eff }}\right)$
from mixing：

$$
\begin{aligned}
& \left|B_{L}\right\rangle=p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle \\
& \left|B_{H}\right\rangle=p\left|B^{0}\right\rangle-q\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Analysis Variables - Topological

- Light quark continuum cross section $\sim 3 x b b$
- B mesons produced almost at rest since just above threshold
- Use event topology to discriminate
- Combine variables in a Fisher discriminant or neural network

Analysis Variables - Kinematic

Make use of precision kinematic information from the beams.

Signal Distributions

$$
\Delta E=E_{B}^{*}-E_{\text {beam }}^{*}
$$

Continuum
Distributions

CKM Angle β

- $\sin (2 \beta)$ well measured in charmonium modes - only 1 weak phase, clean measurement
- Looking for new physics measuring $\sin (2 \beta)$ in $b \rightarrow s$ "penguin" loop modes:
$\phi K_{S}^{0}, K_{S}^{0} K_{S}^{0} K_{S}^{0}$ etc.
- Also measure $\cos (2 \beta)$ in order to resolve the 4 -fold ambiguity

$$
\sin (2 \beta)=0.722 \pm 0.040 \pm 0.023
$$

BaBar result from 227 million $B \bar{B}$ pairs (combined fit to all charmonium modes)

$\sin (2 \beta)$ in $B^{0} \rightarrow \phi K^{0} \& \quad B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}$ (preliminary)

$B^{0} \rightarrow \phi K^{0}$

- Combination of K_{S} and K_{L} modes
- 227 million $B \bar{B}$ pairs
- $1^{\text {st }}$ error statistical, $2^{\text {nd }}$ systematic
$B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}$
- Consider whole Dalitz plot excluding ϕ region (15 MeV)
- Moments analysis using sPlots technique (physics/0402083) determines the $C P$-even fraction: $f_{C P-\text { even }}=0.89 \pm 0.08 \pm 0.06$
- $3^{\text {rd }}$ error from CP-even fraction uncertainty

$$
\begin{aligned}
\sin \left(2 \beta_{e f f}\right) & =0.50 \pm 0.25_{-0.04}^{+0.07} \\
C_{\phi K^{0}} & =0.00 \pm 0.23 \pm 0.05
\end{aligned}
$$

$$
\sin \left(2 \beta_{\text {eff }}\right)=0.55 \pm 0.22 \pm 0.04 \pm 0.11
$$

$\sin (2 \beta)$ in $B^{0} \rightarrow K_{S}^{0} K_{S}^{0} K_{S}^{0}$ (preliminary)

- Like $B^{0} \rightarrow \phi K_{s}^{0}$ has been noted to have small theoretical uncertainty
- Pure CP-even state
- Requires beam-spot constraint vertexing
- Results with 227M $B \bar{B}$ pairs:
- $B F=\left(6.9_{-0.8}^{+0.9} \pm 0.6\right) \times 10^{-6}$
- $S=-0.71_{-0.32}^{+0.38} \pm 0.04$
- $C=-0.34_{-0.25}^{+0.28} \pm 0.05$
- Assuming single penguin amplitude ($C=0$):

$$
\sin \left(2 \beta_{\text {eff }}\right)=0.79_{-0.36}^{+0.29} \pm 0.04
$$

Consistent with the SM at precision comparable with other penguin modes

$\sin (2 \beta)$ Comparison

- Compare tree and penguin decays
- BaBar alone:
$\Delta \sin (2 \beta) \sim-2.9 \sigma$
- BaBar+Belle:
$\Delta \sin (2 \beta) \sim-3.7 \sigma$

$\cos (2 \beta)$ from $B \rightarrow J / \psi(K \pi)_{\text {P-wave }}$ (preliminary)

- $B \rightarrow \mathrm{VV}$ decays proceed through 3 partial waves, $\mathrm{L}=0,2$ ($C P$-even) and $\mathrm{L}=1$ ($C P$-odd)
- $\cos (2 \beta)$ appears in the interference
- Angular analysis allows separation of partial waves
- Sign of $\cos (2 \beta)$ still ambiguous when P -wave is considered on its own...
- Broad S-wave also present [Nucl. Phys. B296, 493 (1988)]
- Include this amplitude and examine the phase motion
- Only one solution shows physical phase behaviour
- $\cos (2 \beta)$ positive at $86 \% \mathrm{CL}$
- Result from $88 \mathrm{M} B \bar{B}$ pairs - more data to add!!

$$
\cos (2 \beta)=2.72_{-0.79}^{+0.50} \pm 0.27
$$

$\mathbf{m}_{\mathbf{K} \pi}\left(\mathrm{GeV} / \mathbf{c}^{2}\right)$

CKM Angle α

Measured in $B \rightarrow \pi \pi, \rho \pi$ and $\rho \rho$
Tree and penguin diagrams present:

- Measure $\alpha_{\text {eff }}$ instead of α

$$
\begin{aligned}
& C_{h h}=0 \\
& S_{h h}=\sin (2 \alpha)
\end{aligned}
$$

$$
\begin{aligned}
C_{h h} & \propto \sin (\delta) \\
\delta & =\delta_{P}-\delta_{T} \\
S_{h h} & =\sqrt{1-C_{h h}^{2}} \sin \left(2 \alpha_{e f f}\right)
\end{aligned}
$$

Need to bound the shift $\left|\alpha_{\text {eff }}-\alpha\right|$

- Penguin:Tree ratio different for different decays

Untangling $\alpha_{e f f}$

Use isospin symmetry to relate the decay rates:

- Triangles for $\pi \pi / \rho \rho$
- Pentagons for $\rho \pi$

Making fewest assumptions gives the bound:

$$
\sin ^{2}\left(\alpha_{\text {eff }}-\alpha\right)<\frac{B F\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)}{B F\left(B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}\right)}
$$

Gronau, London :
PRL65, 3381 (1990)

Snyder, Quinn :
PRD48, 2139 (1993)

$\mathbf{A}^{+-}=A\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)$
$\widetilde{\mathbf{A}}^{+-}=A\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)$
$\mathbf{A}^{+0}=A\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)$
$\widetilde{\mathbf{A}}^{-0}=A\left(B^{-} \rightarrow \pi^{-} \pi^{0}\right)$
$\mathbf{A}^{00}=A\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)$
$\widetilde{\mathbf{A}}^{00}=A\left(\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)$

Grossman, Quinn : PRD58, 017504

α in $B \rightarrow \pi \pi$ (preliminary)

All results use $227 \mathrm{M} B \bar{B}$ pairs except $\pi^{+} \pi^{\pi} B F$ which uses 97 M

$$
\begin{aligned}
& \bullet B^{0} \rightarrow \pi^{+} \pi^{-} \\
& \circ \\
& B F=(4.7 \pm 0.6 \pm 0.2) \times 10^{-6} \\
& \circ S_{\pi^{+} \pi^{-}}=-0.30 \pm 0.17 \pm 0.03 \\
& \circ C_{\pi^{+} \pi^{-}}=-0.09 \pm 0.15 \pm 0.04 \\
& B^{0} \rightarrow \pi^{0} \pi^{0} \\
& \cdot B F=(1.17 \pm 0.32 \pm 0.10) \times 10^{-6} \\
& \circ C_{\pi^{0} \pi^{0}}=-0.12 \pm 0.56 \pm 0.06 \\
& \circ B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \\
& \circ B F=(5.8 \pm 0.6 \pm 0.4) \times 10^{-6} \\
& \circ A_{C P}=-0.01 \pm 0.10 \pm 0.02 \\
& \text { Isospin: } \mid \alpha-\alpha_{\text {eff }}<35^{\circ} \text { at } 90 \% \mathrm{CL}
\end{aligned} \Rightarrow
$$

Isospin analysis of $\pi \pi$ gives only very loose bound with current statistics

$B \rightarrow \rho^{+} \rho^{-}$(89M B \bar{B} pairs)

- VV final state
- Requires angular analysis to untangle different CP states

$$
\frac{d^{2} N}{d \cos \theta_{1} d \cos \theta_{2}} \propto \underbrace{f_{L} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2}}_{\begin{array}{c}
\text { Longitudinal } \\
C P+1 \text { eigenstate }
\end{array}}+\underbrace{\frac{1}{4}\left(1-f_{L}\right) \sin ^{2} \theta_{1} \sin ^{2} \theta_{2}}_{\begin{array}{c}
\text { Transverse } \\
\text { non-CP eigenstate }
\end{array}}
$$

- Longitudinal part in $\rho^{+} \rho^{-}$system measured to be:

$$
f_{L}=0.99 \pm 0.03 \pm 0.04
$$

- CP-even component dominates
- Branching fraction measured to be: $B F=(30 \pm 4 \pm 5) \times 10^{-6}$

α in $B \rightarrow \rho \rho$ (preliminary)

$$
\begin{aligned}
& B ^ { 0 } \rightarrow \rho ^ { + } \rho ^ { - } \longdiv { \text { hep-ex00407051 } } \\
& \text { - } S_{\rho^{+} \rho^{-}}=-0.19 \pm 0.33 \pm 0.11 \\
& \text { - } C_{\rho^{+} \rho^{-}}=-0.23 \pm 0.24 \pm 0.14 \\
& B^{0} \rightarrow \rho^{0} \rho^{0} \quad \text { hep-ex00480601 } \\
& \text { - } B F<1.1 \times 10^{-6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } B F=\left(26.4_{-6.4}^{+6.1}\right) \times 10^{-6} \\
& \text { - } f_{L}=0.99_{-0.07}^{+0.05} \\
& \alpha=(96 \pm 10 \pm 4 \pm 11)^{\circ}
\end{aligned}
$$

α in $B^{0} \rightarrow(\rho \pi)^{0} \quad$ (preliminary)

- $\rho^{ \pm} \pi^{\mp}$ not a CP eigenstate
- Previous analyses have selected out the $\rho \pi$ bands from the Dalitz plot and removed the interference regions
- Better to do an amplitude analysis

Extract α \& strong phases using interference between amplitudes

Dalitz plot dominated by $\rho^{+} \pi^{-}, \rho^{-} \pi^{+}$, $\rho^{0} \pi^{0}$ and radial excitations

Analysis uses $213 \mathrm{M} B \bar{B}$ pairs
1184 ± 58 signal events

α in $B^{0} \rightarrow(\rho \pi)^{0} \quad$ (preliminary)

- CP violating observables:
- $A_{C P}=-0.088 \pm 0.049 \pm 0.013$
- $S_{\rho \pi}=-0.10 \pm 0.14 \pm 0.04$
- $C_{\rho \pi}=0.34 \pm 0.11 \pm 0.05$
- Non-CP observables:

$$
\begin{aligned}
\Delta S & =0.22 \pm 0.15 \pm 0.03 \\
\Delta C & =0.15 \pm 0.11 \pm 0.03 \\
\delta_{+-} & =\left(-67_{-31}^{+28} \pm 7\right)^{\circ}
\end{aligned}
$$

$$
a=\left(113_{-17}^{+27} \pm 6\right)^{\circ}
$$

Combined Constraints on α

- Combine all α results
- Compare with global CKM fit
- α is measured
- Mirror solutions disfavoured

$$
\alpha=\left(103_{-10}^{+11}\right)^{\circ}
$$

CKM Angle γ

- Access γ through direct $C P$-violation in the interference of diagrams with $b \rightarrow u \bar{c} s$ and $b \rightarrow c \bar{u} s$

- Reconstruct $D^{(*) 0}$ and $\bar{D}^{*) 0}$ in the same final state
- Charged B's - time independent measurement
- Amplitudes have relative weak phase of γ
c.f. neutral $B^{\prime} \mathrm{s} \rightarrow 2 \beta+\gamma$
hep-ex/0408038
- Need to also determine the relative strong phase (δ_{B}) and ratio of magnitudes of the two diagrams:
$r_{B}=\frac{\left|A\left(B^{+} \rightarrow D^{0} K^{+}\right)\right|}{\left|A\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)\right|} \quad \begin{aligned} & \text { Expected to be } \sim 0.1-0.2 \\ & \text { Sensitivity to } \gamma \text { dependent on size of } r_{B} .\end{aligned}$

D0 to 3-body Dalitz Method

- Choose D^{0} decay to 3 -body state $K_{\mathrm{S}} \pi^{+} \pi^{-}$
- Dalitz analysis of the D^{0} decay with isobar model fixes the phase variation δ_{D} across the Dalitz plot
- Use high stats D^{*+} sample
- Assume no D mixing or $C P$ violation in the D decays
- Fixing the D^{0} model, fit simultaneously to B^{+}and B^{-}samples to determine γ, r_{B} and δ_{B}

$D^{* \pm}$ Data

B^{+}

$B^{ \pm}$Data

D ${ }^{0}$ Dalitz Method Preliminary Results

- Results from $211 \mathrm{M} B \bar{B}$ pairs
- $r_{B}<0.19$
- $\delta_{B}=(114 \pm 41 \pm 8 \pm 10)^{\circ}$

$$
\begin{aligned}
r_{B}^{*} & =0.155_{-0.077}^{+0.070} \pm 0.040 \pm 0.020 \\
\delta_{B}^{*} & =(303 \pm 34 \pm 14 \pm 10)^{\circ}
\end{aligned}
$$

$$
\gamma=(70 \pm 26 \pm 10 \pm 10)^{\circ}
$$

$3{ }^{\text {rd }}$ error due to uncertainty on Dalitz model

Conclusions

- BaBar producing great number of measurements
- β
- Well measured in charmonium modes
- Comparison with $b \rightarrow s$ penguin modes shows possible indication of potential new physics - more statistics required
- α
- Measurements from three modes: $\pi \pi, \rho \pi, \rho \rho$
- Constraint dominated by $\rho \rho$ and $\rho \pi$
- γ
- Many possible approaches
- Dalitz analysis of D^{0} decay most sensitive at present
- Greater statistics essential for this measurement
- Development of further methods in pipeline

Backup Slides

Comparison with Belle: CPV in $B^{0} \rightarrow \pi^{+} \pi^{-}$

Belle report observation of CPV in $B^{0} \rightarrow \pi^{+} \pi^{-}$
>3б discrepancy between BABAR \& Belle

Belle 3.2σ evidence for Direct CP violation not supported by BABAR measurements

New experimental situation

GLW and ADS methods for γ

Gronau, London, Wyler

- Reconstruct both D^{0} / \bar{D}^{0} in decays to $C P$ eigenstates
- Compare decay rates of B^{+} and B^{-}to both $C P$-even and $C P$-odd final states of the D
- Four observables determine the three unknowns γ, r_{B} and δ_{B}
- Significant signals observed in several modes
- Only loose bound on r_{B} possible with current statistics
- $r_{B}^{2}=0.24 \pm 0.23$

Atwood, Dunietz, Soni

- Reconstruct D^{0} / \bar{D}^{0} in decay to $(\mathrm{K} \pi)^{0}$
- Both D flavours can decay to kaons of either charge again four observables
- Two further parameters: r_{D}, the ratio of the D decay magnitudes and δ_{D} their relative strong phase
- r_{D} has been measured:
0.060 ± 0.003
- but δ_{D} is unknown
- No significant signals observed in 227M BB pairs
- $r_{B}<0.23$ @ 90% CL

Small value of r_{B} will make extraction of γ by these methods difficult.

