

Charm Physics at Belle

A.Kuzmin (BINP)

XIX Rencontres de Physique de La Vallee d'Aoste

Outline:

- Introduction
- $D^0-\overline{D}{}^0$ mixing in $D^0\to K^+\pi^-$
- $D^0-\overline{D}{}^0$ mixing in $D^0\to K^+e^-\bar{\nu_e}$
- D^{**} study in B decay
- $B \rightarrow D_{sJ}K/\pi$ results
- Double charm production
- Summary

KEKB, Belle detector

- 3.5 GeV $e^+ \times 8.0$ GeV e^- .
- $\mathcal{L} = 1.5 \times 10^{34} cm^{-2} s^{-1}$
- Continuous injection $1.1 \,\mathrm{fb}^{-1}/\mathrm{day}.$
- $\int \mathcal{L}dt \approx 360 \, fb^{-1}$

- Sil.VD: 3(4) layers DSSD
- **CDC** : small cells $He + C_2H_5$
- TOF counters.
- Aerogel CC: $n = 1.015 \sim 1.030$
 - CsI(Tl) 16 X₀

 \rightarrow

- SC solenoid 1.5 T
- $\mu K_L detection$ 14-15 layers RPC+Fe

Charm production

 $e^+e^- \to c \bar{c}$ $e^+e^- \to \Upsilon(4s) \to B\bar{B}$ В X • $E_c = E_e$ • $E_B = E_e$ • $\sigma \sim 1.3 \, nb$ • $\sigma \sim 1 \, nb$ • Both at $\Upsilon(4s)$ and in continuum • Fixed initial state (B) angular momenta. **Charm studies**

- $D^0 \overline{D}^0$ mixing.
- Rare decays of D.
- Study of charmonia production
- Excited D^{**} and D_{sJ} spectroscopy and production from B decay.
- Charm baryons

A.Kuzmin

$D^0 - \overline{D}^0$ mixing

• Neutral D mass eigenstates are $D^0 - \overline{D}^0$ combinations with masses m_1, m_2 .

$$x = \frac{m_1 - m_2}{(\Gamma_1 + \Gamma_2)/2}, \qquad y = \frac{\Gamma_1 - \Gamma_2}{\Gamma_1 + \Gamma_2}$$

- Highly suppressed in SM: $x, y = O(10^{-10} 10^{-9})$ Long distance effects $\rightarrow x, y = O(10^{-3} - 10^{-2})$
- New Physics can provide additional box diagrams

Way to measure.

- Lifetime in different D decay modes K^+K^- , $\pi^+\pi^-$, $K\pi$.
- Wrong-sign decay $D^0 \to K^+ \pi^-$ time evolution.
- Wrong-sign decay amplitude $D^0 \to K^+ l^- \nu$.

$D^0 - \overline{D}{}^0$ mixing in $D^0 \to K^+ \pi^-$.

 $\int \mathcal{L}dt = 90 \, \text{fb}^{-1}$ $Q = m_{K\pi\pi_{slow}} - m_{K\pi} - m_{\pi}$ $m_{K\pi}$ 10 Events/0.125MeV Events/0.005GeV 10 Combinatoric **Random** π D 3body *10* D flavor – sign of π from $D^{*+} \rightarrow D^0 \pi^+$. 🗌 Signal 10 10 Wrong sign: **Double-Cabibbo Suppressed** 10 mixing+Cabibbo-favored 10 10 1.825 1.85 1.875 1.9 0 5 10 15 20 Mass (GeV) Q(MeV)300 Events/0.005GeV Events/0.125MeV Combinatoric Random π **Combinatoric** 400 D0 3body **Random** π $\square D_{a}, D^{+}$ 3body 200 300 Signal **D0** 3body 200 $\square D_{,,} D^+$ 3body 100 Signal 100 $R_{\rm WS} = \frac{\Gamma(D^0 \to K^+ \pi^-)}{\Gamma(D^0 \to K^- \pi^+)}$ 0 1.825 1.85 1.875 1.9 5 10 15 20 0 $= (0.371 \pm 0.018)\%$ Mass (GeV) Q(MeV)(statistical errors only)

Charm Physics at Belle.

Wrong sign decay rate depends on DCS and CF amplitude + mixing:

In the case of CPV:
$$\{R_D^+, x'^{\pm 2}, y'^{\pm }\}$$
 for D^0 and $\{R_D^-, x'^{\pm 2}, y'^{\pm }\}$ for \overline{D}^0
CP violation is parametrized by the asymmetries:
 $A_D = (R_D^+ - R_D^-)/(R_D^+ + R_D^-)$ and $A_M = (R_M^+ - R_M^-)/(R_M^+ + R_M^-)$,
where $R_M^{\pm} = (x'^{\pm 2} + y'^{\pm 2})/2$.

Charm Physics at Belle.

95 % C.L. region.

hep-ex/0408125, PRL, 94, N7, p.071801

A.Kuzmin

Charm Physics at Belle.

- No amplification $\sim \sqrt{R_D}$
- Presence of ν

- Use simple cut on $t > 1.5\tau_D$ to suppress D^0 mistag background
- Use constraints to improve ν reconstruction for m_{D^*}, m_{ν}
- The background shapes are estimated from the data, with a small MC-derived correction.

 $D^0 \to K^+ e^- \bar{\nu_e}$.

 $\begin{array}{c} hep-ex/0408125\\ update, with twice the statistics, is in preparation\end{array}$

Charm Physics at Belle. Les Rencontres

 $D^{**} \rightarrow D^{(*)}\pi$ have different dependences

$D_2^* \rightarrow$	$D\pi$,	$D^*\pi$	D-wave
$D_1 \rightarrow$		$D^{*}\pi$	D-wave
$D'_1 \rightarrow$		$D^*\pi$	S-wave
$D_0^* \rightarrow$	$D\pi$		S-wave

In B decay fixed initial state spin 0.

All D^{**} states can be distinguished using Dalitz plot analysis

Test of HQET and QCD sum rule predictions.

$B^- \to D^{(*)+} \pi^- \pi^-$

Masses and widths of all neutral D^{**} 's have been measured. First observation of D_0^* and D_1' .

PRD 69, 112002,2004

Charm Physics at Belle.

 $\bar{B^0} \to D^{(*)0} \pi^+ \pi^-$

hep-ex/0412072

$B \to D^{(*)}\pi\pi$

The production of $D_{j=3/2}^{**+}\pi^-$ in B^0 decay is comparable with $D_{j=3/2}^{**0}\pi^-$ in B^+ decay.

 $D_{j=1/2}^{**+}\pi^-$ production in B^0 decay is at least 5 times lower than in B^+ decay.

- Tree $B \rightarrow D^{**}$ diagram: $\tau_{3/2} >> \tau_{1/2}$
- Color suppressed diagram $f_{D_{3/2}} << f_{D_{1/2}}$

For broad D^{**} production Color suppressed amplitude dominates.

- $\bar{B^0} \to D^{(*)0} \pi^+ \pi^-$ includes $\bar{B^0} \to D^{(*)0} h^0$
- $D^{(*)}\rho$, $D^{(*)}f_2(1270)$ and $D^{(*)}f_0(600)$ are included in the fit amplitude.

hep-ex/0412072

- Narrow $D_{sJ}(2317)$ and $D_{sJ}(2460)$ were observed by BaBar, CLEO and Belle.
 - Masses significantly lower than potential model expectations.
 - Widths of the resonances are consistent with zero.
 - The quantum numbers are consistent with 0^+ and 1^+ .
- Decays $B \to D_{sJ}\bar{D}$ were observed by BaBar and Belle with branching fractions one order magnitude smaller than for $B \to D_s\bar{D}$ decay.
- Studies of decays $\bar{B^0} \to D^+_{sJ} K^-$, $\bar{B^0} \to D^-_{sJ} \pi^+$ are important to understand nature of D_{sJ}

W-exchange diagram Final state interaction Tree, 4-quark D_{sJ}

Charm Physics at Belle.

$\bar{B^0} \rightarrow D^+_{sJ} K^-, \ \bar{B^0} \rightarrow D^+_{sJ} \pi^-$ decays.

 $\frac{152 \times 10^6 \ B\bar{B} \ pairs}{D_{sJ}(2317)^+ \to D_s^+ \pi^0, \ D_{sJ}(2460)^+ \to D_s^+ \gamma, D_s^+ \to \phi \pi^+, \ K^{*0}K^+, \ K_sK^+,}$

 $\Delta \mathbf{E}$ (GeV)

Fit mass difference $\Delta m = m_{D_{sJ}} - m_{D_s}$

Decay mode	Yield	Product $\mathcal{B}(\bar{B^0} \to D_{sJ}h) imes$	Significance
	$\Delta M(D_{sJ})$	$\mathcal{B}(D_{sJ} \to D_s \pi^0(\gamma)) \ (10^{-5})$	σ
$\bar{B^0} \to D^*_{sJ}(2317)^+ K^-$	$16.6^{+4.6}_{-4.1}$	$5.3^{+1.5}_{-1.3}\pm 0.7\pm 1.4$	6.8
$\bar{B^0} \to D^*_{sJ}(2317)^- \pi^+$	$2.9^{+3.3}_{-2.8}$	$<\!2.5(90\%{ m C.L.})$	
$\bar{B^0} \to D_{sJ}(2460)^+ K^-$	$2.0^{+2.9}_{-2.2}$	$<\!0.94(90\%{ m C.L.})$	
$\bar{B^0} \to D_{sJ}(2460)^- \pi^+$	$-1.9^{+3.1}_{-2.6}$	<0.40 (90% C.L.)	

 $\bar{B^0} \to D_{sJ}^*(2317)^+ K^-$ branching fraction is of the same order as $\bar{B^0} \to D_s^+ K^-$ and at least a factor of 2 larger than the $\bar{B^0} \to D_{sJ}(2460)^+ K^-$.

No significant signal from $\bar{B^0} \to D_{sJ}^- \pi^+$

hep-ex/0409026, PRL 94, N6, p.061802

Charm Physics at Belle.

Double charmonium production

Charm Physics at Belle.

Les Rencontres de Physique, 2005.03.02

3.8

glueball

Summary

• Sensitivity to $D^0 - \bar{D^0}$ mixing has reached a 10^{-3} level.

- Accuracy is close to the level to search CPV in these decays.
- The branching fractions of $B^- \to D^{**0}\pi^-$ have been measured both for narrow and for broad states. Masses and widths of D^{**} have been measured.
- Significantly smaller branching fractions of $\bar{B^0} \to D^{**+}\pi^-$ for the broad states has been observed.
- $\bar{B^0} \to D_{sJ}^{*+} K^-$ and $\bar{B^0} \to D_{sJ} \pi^+$ decays were studied for the first time.
- The branching fraction of $\bar{B^0} \to D_{sJ}^* (2317)^+ K^-$ is of the same order as $\bar{B^0} \to D_s^{*+} K^-$ and at least a factor of 2 larger than the $\bar{B^0} \to D_{sJ} (2460)^+ K^-$.
- No significant signal from $\bar{B^0} \rightarrow D_{sJ} \pi^+$
- Double charmonia production has been observed.

Backup slides

A.Kuzmin Charm Physics at Belle. Les Rencontres de Physique, 2005.03.02 p. 19

	c	5 · -	
Fit Case	Parameter	Fit Result	95% CL interval
		$(\times 10^{-3})$	$(\times 10^{-3})$
	x'^2	$-1.53^{+0.80}_{-1.00}$	$x'^2 < 0.81$
No CPV	y'	$25.4^{+11.1}_{-10.2}$	-8.2 < y' < 16
	R_D	2.87 ± 0.37	$2.7\!<\!R_D\!<\!4.0$
	R_M	_	$R_M < 0.42$
No CPV	y'	6.0 ± 3.3	_
x' = 0 (fixed)	R_D	3.43 ± 0.26	-
	A_D	-80 ± 77	$-250\!<\!A_D\!<\!110$
CPV allowed	A_M	$987{}^{+13}_{-380}$	$-991\!<\!A_M\!<\!1000$
	x'^2	—	$x'^2 < 0.89$
	y'	—	-30 < y' < 27
	R_M	_	$R_M < 0.46$
No mixing	$B = 3.81 \pm 0.17 (\text{stat})^{+0.08} (\text{syst})$		
or CPV	μ_D	$0.01 \pm 0.11 (\text{Stat.}) = 0.16 (\text{Syst.})$	

$D^0 - \overline{D}{}^0$ mixing in $D^0 \to K^+ \pi^-$.

A.Kuzmin

p. 20

Masses

• Masses and widths of D^{**} have been measured.

$$\begin{split} M_{D_2^{*+}} &= (2459.5 \pm 2.3 \pm 0.7^{+4.9}_{-0.5}) \,\mathrm{MeV}/c^2, \quad \Gamma_{D_2^{*+}} = (48.9 \pm 5.4 \pm 4.2 \pm 1.9) \mathrm{MeV}, \\ M_{D_1^{+}} &= (2428.2 \pm 2.9 \pm 1.6 \pm 0.6) \,\mathrm{MeV}/c^2, \quad \Gamma_{D_1^{+}} = (34.9 \pm 6.6^{+4.1}_{-0.9} \pm 4.1) \,\mathrm{MeV}, \\ M_{D_2^{*0}} &= (2461.6 \pm 2.1 \pm 0.5 \pm 3.3) \,\mathrm{MeV}/c^2, \quad \Gamma_{D_2^{*0}} = (45.6 \pm 4.4 \pm 6.5 \pm 1.6) \,\mathrm{MeV}, \\ M_{D_2^{*0}} &= (2308 \pm 17 \pm 15 \pm 28) \,\mathrm{MeV}/c^2, \quad \Gamma_{D_2^{*0}} = (276 \pm 21 \pm 18 \pm 60) \,\mathrm{MeV}, \\ M_{D_1^{0}} &= (2421.4 \pm 1.5 \pm 0.4 \pm 0.8) \,\mathrm{MeV}/c^2, \quad \Gamma_{D_1^{0}} = (23.7 \pm 2.7 \pm 0.2 \pm 4.0) \,\mathrm{MeV}, \\ M_{D_1^{\prime 0}} &= (2427 \pm 26 \pm 20 \pm 15) \,\mathrm{MeV}/c^2, \quad \Gamma_{D_1^{\prime 0}} = (384^{+107}_{-75} \pm 24 \pm 70) \,\mathrm{MeV}. \end{split}$$

 $D^{*+}\pi^{-}\pi^{-}$ Dalitz plot analysis.

Mass constrain fit to M_B , M_{D^*} and M_D .

B decays to 2 pseudoscalars and vector $\mathbf{B} \to \mathbf{PPV}$

 $V \to PP$ decay gives information about polarization.

$$\mathbf{d\Gamma} = \frac{|\mathbf{A}|^2}{\mathbf{256}\pi^3 \mathbf{M}_{\mathbf{B}}^3} \frac{\mathbf{p_{3*}}}{\mathbf{M_*}} \mathbf{dm_{13}^2} \mathbf{dm_{12}^2} \mathbf{d\cos\alpha d\gamma},$$

$$D_{2}^{*} \quad 2_{3/2}^{+} \quad A^{(2)} \sim \sin \alpha \sin \theta \sin \gamma$$
$$D_{3/2} \quad 1_{3/2}^{+} \quad A_{D}^{(1)} \sim \sin \alpha \sin \theta \cos \gamma + 2 \cos \theta \cos \alpha$$
$$D_{1/2} \quad 1_{1/2}^{+} \quad A_{S}^{(1)} \sim \sin \alpha \sin \theta \cos \gamma - \cos \theta \cos \alpha$$

Since c-quark has finite mass the two 1^+ states can be mixed:

$$D_{1} = (D_{3/2} \cos \omega + D_{1/2} e^{i\psi} \sin \omega)$$
$$D_{1}^{*} = (D_{1/2} \cos \omega - D_{3/2} e^{-i\psi} \sin \omega)$$

$$A_{\Sigma} = (a_d A_D^{(1)} \cos \omega + a_s A_S^{(1)} \sin \omega e^{i\psi}) BW_{M_{D_1} \Gamma_{D_1}}(q^2) + (a_s A_S^{(1)} \cos \omega - a_d A_D^{(1)} \sin \omega e^{-i\psi}) BW_{M_{D'_1} \Gamma_{D'_1}}(q^2) + a_2 A^{(2)} BW_{M_{D_2^*} \Gamma_{D_2^*}}(q^2) + a_{D_v} A^{(D_v)} BW_{D_v}(q^2) + a_{B_v^*} A^{(B_v^*)} BW_{B_v^*}(q^2)$$

A.Kuzmin

Charm Physics at Belle.