The physics program of a super Φ factory

Gino Isidori [INFN-Frascati]

- Introduction
 - General considerations about future low-energy experiments
 - → Realistic possibilities at e^+e^- colliders with $\sqrt{s} \leq 2 \text{ GeV}$
- Highlights of the physics program of a Φ factory with $L \ge 10^{33}$ cm ⁻²s ⁻¹
 - General considerations about the kaon program
 - Main issues within kaon physics:
- CPT tests & K_L - K_S interferometry
- The rare $K_S \rightarrow \pi^0 l^+ l^-$ decays
- The $V_{\rm us}$ saga
- $\pi\pi$ phases *et al*.

- Beyond kaon physics
- Conclusions

General considerations about future low-energy experiments

Within a few years we shall enter in the LHC era

Possible scenarios in 3-4 years from now:

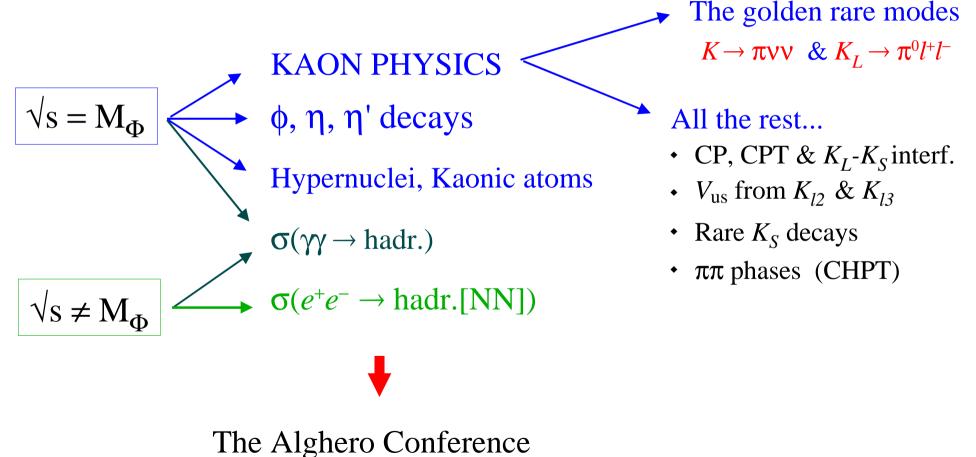
- LHC has started and has clearly seen signals of NP
- LHC has started but has not seen any clear NP signal
- [LHC has not started yet...]

Within all these scenarios it is still worth to perform high-precision low-energy experiments

Main arguments why it is still important to perform high-precision low-energy experiments in the LHC \Leftrightarrow main research directions :

→ No competition with LHC as far as the NP search is concerned [with some remarkable exception], but <u>full complementarity</u> for the identification of the symmetries of the NP model

I. Study of <u>rare & forbidden processes</u>: $K \rightarrow \pi \nu \nu, \mu \rightarrow e \gamma, CPT$, ...


Several SM parameters[Yukawa sector], which are likely to play a fundamental role in the identification of the underlying theory, can only be measured at low energies

II. <u>Precision measurements</u> of V_{CKM} , m_{q} , α_{i}

- ➡ There are still interesting aspects of non-perturbative QCD which are not fully understood and need to be investigated
 - III. <u>CHPT</u> studies for K, π , η decays, <u>exotic bound states</u> [hadr. atoms, hypernuclei], $e^+e^- \rightarrow$ hadr. <u>form factors</u>, ...

Realistic possibilities at e^+e^- *colliders with* $\sqrt{s} \leq 2$ GeV

In principle an e^+e^- machine with <u>flexible</u> c.o.m. energy up to 2 GeV and <u>very high luminosity</u> at the Φ peak would be an ideal machine for this type of physics:

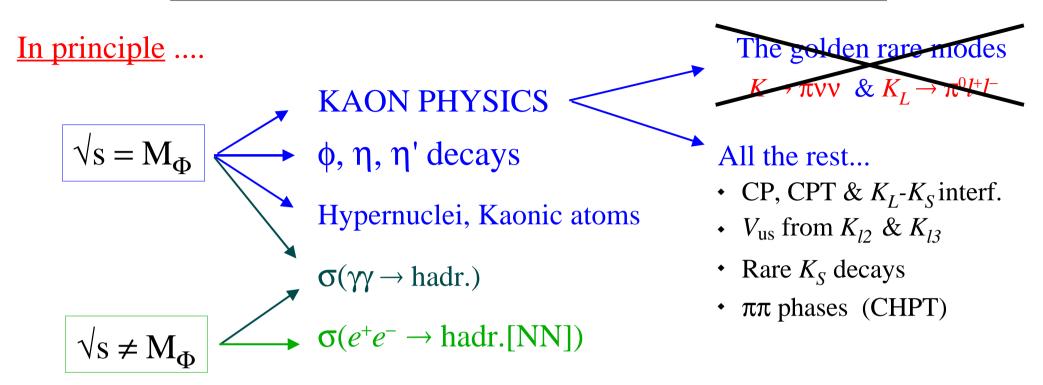
[www.lnf.infn.it/ conference/ d2]

$$K_L
ightarrow \pi^0
u \overline{
u}$$
 cannot be measured

It has been said so often:

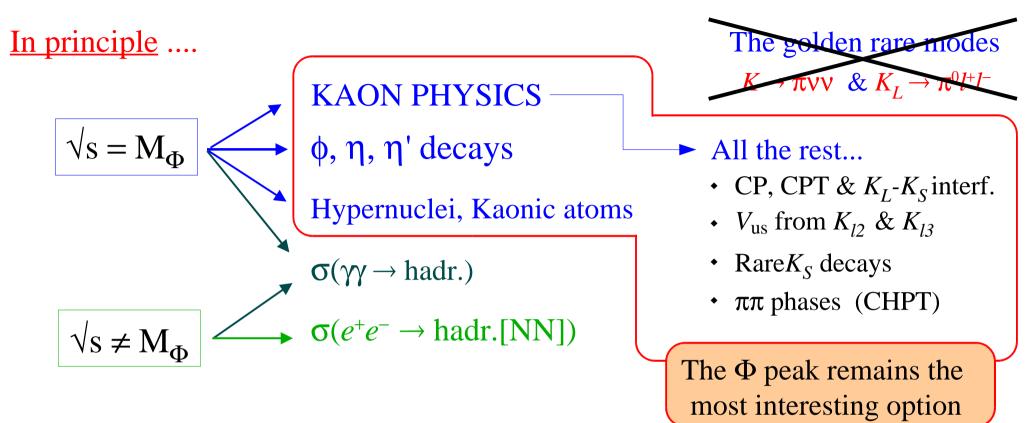
$$\begin{split} \Im V_{td} V_{ts}^* &= A^2 \lambda^5 \eta = 25.6 \sqrt{\mathsf{BR}(K_L \to \pi^0 \nu \bar{\nu})} \\ \mathsf{BR}(K_L \to \pi^0 \nu \bar{\nu}) = 3 \times 10^{-11} \\ 10 \text{ eV}/3 \times 10^{-11} &= 3.3 \times 10^{11} \text{ K's. } \texttt{O1\% dec}/\phi \text{, need } 100 \times 3.3 \times 10^{11} &= 3.3 \times 10^{13} \text{ } \phi \text{'s or } 1.1 \times 10^{13} \text{ } \mu \text{b}^{-1} \text{. In one year, need } \mathcal{L} = 10^6 \\ \mu \text{b}^{-1}/\text{s or } \mathcal{L} = 1 \times 10^{36} \text{ cm}^{-2} \text{ s}^{-1} \text{. For one hundred events, } \mathcal{L} = 1 \times 10^{37} \text{ cm}^{-2} \text{ s}^{-1} \text{ or } 10 \text{ year running.} \end{split}$$

$$\frac{J_{12}}{\lambda(1-\lambda^2/2)} \xrightarrow{h=A^2\lambda^5\eta \ (\times 10)} \xrightarrow{}$$


To get η need λ and A!

 $\delta(A^2\lambda^5)/(A^2\lambda^5) \sim 5.6\%$, K. Schubert, LP03. Optimistic?

Alghero 13 September 2003 Paolo Franzini - DAONE2? 30


Realistic possibilities at e^+e^- *colliders with* $\sqrt{s} \leq 2$ GeV

..in practice we need to take into account that:

- If $L < 10^{35}$ cm $^{-2}$ s $^{-1} \Rightarrow$ no chances for the rare golden modes
- Severe <u>external</u> competition on most of the remaining items from other machines/experiments
- Serious <u>internal</u> (time) competition between Φ & non-Φ options [extrapolate from the present DAΦNE situation...]

Realistic possibilities at e^+e^- *colliders with* $\sqrt{s} \leq 2$ GeV

..in practice we need to take into account that:

- If $L < 10^{35}$ cm $^{-2}$ s $^{-1} \implies$ no chances for the rare golden modes
- Severe <u>external</u> competition on most of the remaining items from other machines/experiments
- Serious <u>internal</u> (time) competition between Φ & non-Φ options [extrapolate from the present DAΦNE situation...]

• Highlights of the physics program of a Φ factory with $L \ge 10^{33}$ cm $^{-2}$ s $^{-1}$

General considerations about the kaon program

 $\Phi \rightarrow \mathbf{K}^{+}\mathbf{K}^{-}$ (50%), $\mathbf{K}_{\mathbf{L}}\mathbf{K}_{\mathbf{S}}$ (34%), ...

- Pure K_S beam $[K_L tag] \Rightarrow Rare K_S$ decays [so far, the most used feature by KLOE]
- $K_L K_S$ in a pure quantum state [L=1] \Rightarrow Neutral kaon interferometry
- Kaon beams of known momentum ⇒ Great advantage for any decay with missing energy
- $K^+K^- \& K_LK_S$ in the same detector \Rightarrow Useful for QCD & CPV studies

• Highlights of the physics program of a Φ factory with $L \ge 10^{33}$ cm $^{-2}$ s $^{-1}$

General considerations about the kaon program

 $\Phi \rightarrow \mathbf{K}^{+}\mathbf{K}^{-}$ (50%), $\mathbf{K}_{\mathbf{L}}\mathbf{K}_{\mathbf{S}}$ (34%), ...

- Pure K_S beam $[K_L tag] \Rightarrow Rare K_S$ decays [so far, the most used feature by KLOE]
- $K_L K_S$ in a pure quantum state [L=1] \Rightarrow Neutral kaon interferometry
- Kaon beams of known momentum ⇒ Great advantage for any decay with missing energy
- K⁺K⁻ & K_LK_S in the same detector \Rightarrow Useful for QCD & CPV studies

... the only serious disadvantage is the statistical limitation

10 fb⁻¹@ $\Phi \Rightarrow \sim 10^{10}$ Kaon pairs \Rightarrow well below existing stat. on K_L & K[±]

• Highlights of the physics program of a Φ factory with $L \ge 10^{33}$ cm $^{-2}$ s $^{-1}$

General considerations about the kaon program

 $\Phi \rightarrow \mathbf{K}^{+}\mathbf{K}^{-}$ (50%), $\mathbf{K}_{\mathbf{L}}\mathbf{K}_{\mathbf{S}}$ (34%), ...

- Pure K_S beam $[K_L tag] \Rightarrow Rare K_S$ decays [so far, the most used feature by KLOE]
- $K_L K_S$ in a pure quantum state [L=1] \Rightarrow Neutral kaon interferometry
- Kaon beams of known momentum ⇒ Great advantage for any decay with missing energy
- K⁺K⁻ & K_LK_S in the same detector \Rightarrow Useful for QCD & CPV studies

...the only serious disadvantage is the *statistical limitation*

10 fb⁻¹@ $\Phi \Rightarrow \sim 10^{10}$ Kaon pairs \Rightarrow well below existing stat. on K_L & K[±]

For a competitive program:

L must definitely exceed 10³³ cm ⁻²s ⁻¹
main focus on K_S & K_I K_S interf.

Main issues within kaon physics:

<u>1.</u> CPT tests & neutral kaon interferometry

CPT symmetry is linked to the basic mathematical tools that we use in particle physics:

QFT + Lorentz invariance + Locality \Rightarrow CPT

These tools have intrinsic limitations [we are not able to include gravity in consistent way] \Rightarrow we should expect CPT at some level

But we do not have a consistent & predictive theory if we abandon these tools \Rightarrow hard to define a reference scale/size for CPT

$$|M_{\overline{K}} - M_{K}| < 10^{-18} M_{K}$$
 Very suggestive...
(but not to be over-emphasized)

Main message:

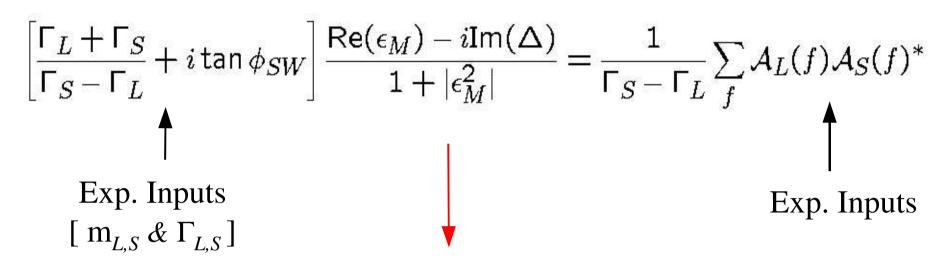
kaon physics offer an ideal framework to test CPT reference scale set by the most significant experimental bounds

E.g.: The charge asymmetry in $K_S \rightarrow \pi^{\pm} l^{\mp} v$

E.g.: Bell-Steinberger relation

Even if CPT is violated, we can assume that unitarity [=probability is conserved] holds:

$$\Gamma_{\mathrm{K}} = \sum_{f} A(\mathrm{K} \to f) A(\mathrm{K} \to f)^{*}$$

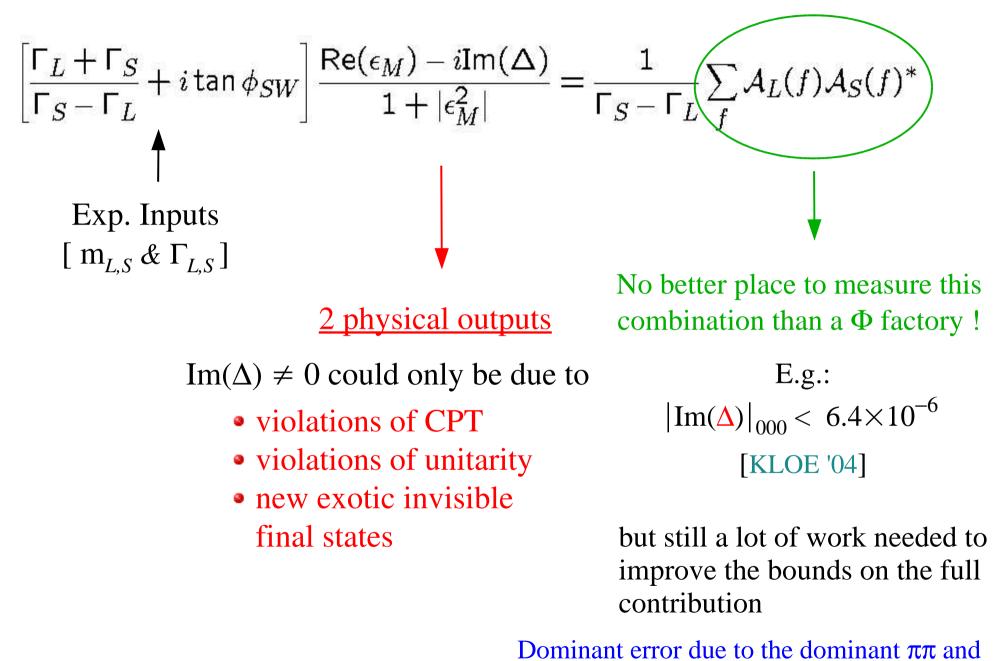

$$\Gamma_{\overline{\mathrm{K}}} = \sum_{f} A(\overline{\mathrm{K}} \to f) A(\overline{\mathrm{K}} \to f)^{*}$$
They should coincide in the limit of exact CPT

$$\left[\frac{\Gamma_L + \Gamma_S}{\Gamma_S - \Gamma_L} + i \tan \phi_{SW}\right] \frac{\operatorname{\mathsf{Re}}(\epsilon_M) - i \operatorname{\mathsf{Im}}(\Delta)}{1 + |\epsilon_M^2|} = \frac{1}{\Gamma_S - \Gamma_L} \sum_f \mathcal{A}_L(f) \mathcal{A}_S(f)^*$$

Exact relation (phase convention independent, no approximations) in the CPT limit [only the CPT-violating parameter Δ has been treated as a small, and expanded to 1st non trivial order]

$$\left|\frac{m_{K^0} - m_{\bar{K}^0}}{m_{K^0}}\right| \approx 1.5 \times 10^{-14} \left| \text{Im} \left(\Delta e^{-i\Phi_{SW}} \right) \right|$$
$$\phi_{SW} = \arctan\left[\frac{2(m_{L} - m_{S})}{\Gamma_{S} - \Gamma_{L}}\right] \approx 43.4^{0}$$

A marvelous tool:



2 physical outputs

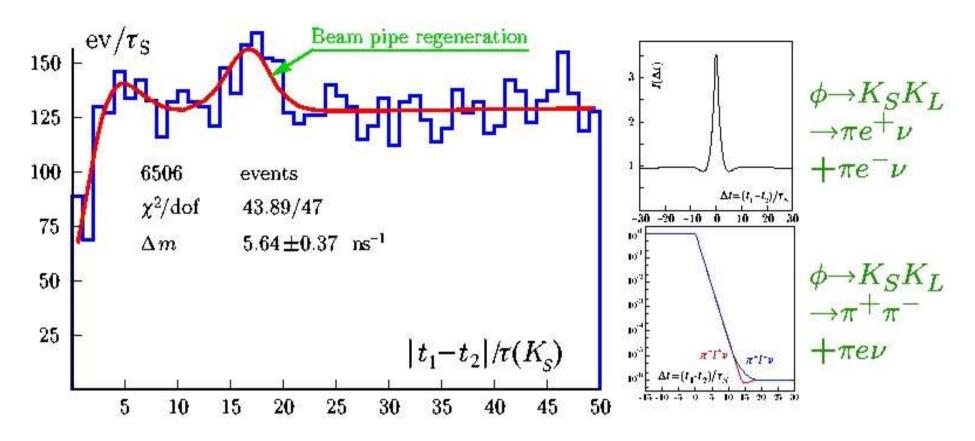
 $\operatorname{Im}(\Delta) \neq 0$ could only be due to

- violations of CPT
- violations of unitarity
- new exotic invisible final states

A marvelous tool:

 $\pi l \nu$ channels, where we need interferometry

Neutral kaon interferometry is the most characteristic type of measurements for a Φ factory:


final states [see 2nd DAΦNE handbook]:

• $(\pi^+\pi^-)-(\pi^+\pi^-)$: $\Delta m \& \Gamma_{L,S} + \eta_{\pm} + \text{tests of QM}$

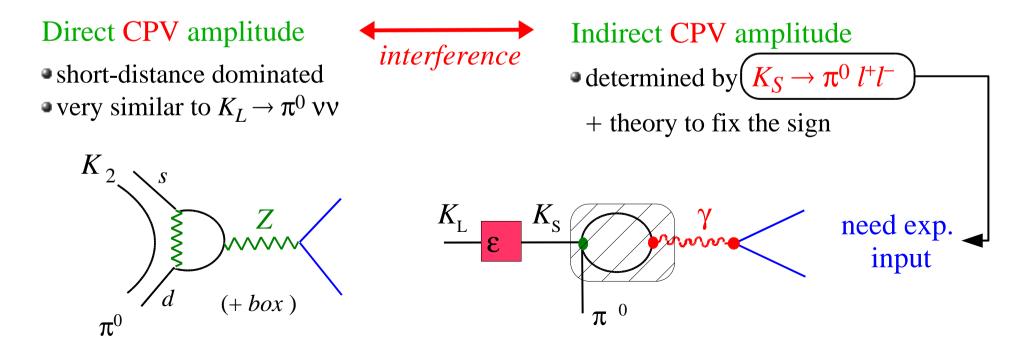
- $(\pi^+\pi^-) (\pi^0\pi^0)$: Re(ϵ'/ϵ) & Im(ϵ'/ϵ) + $\pi\pi$ phases + CPT & tests of QM
- $(\pi l \nu)$ - $(\pi l \nu)$
- (πlν)-(3π)
- (3π)-(3π)
- : $\eta_{3\pi} + \pi\pi$ phases : $\eta_{3\pi} + \pi\pi$ phases [different combinations]
- (2π)-(ππγ)
- : η_{ππγ}

: CPT

Several interesting channels with $L = \text{few } 10 \text{ fb}^{-1}$

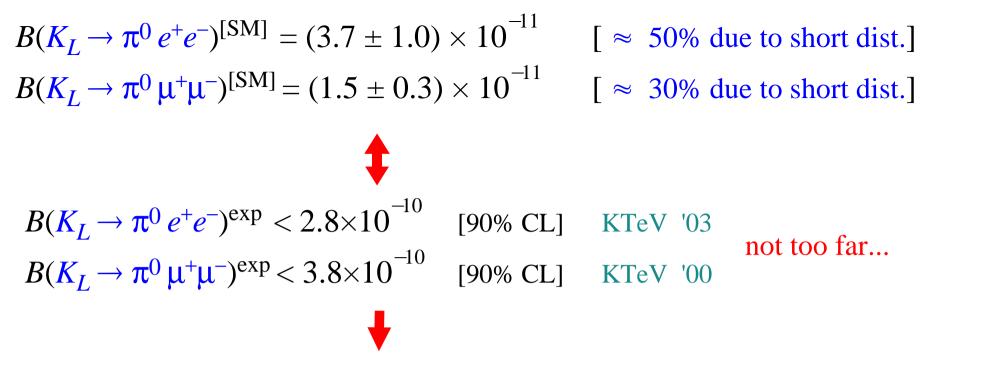
The first example of interference observed in KLOE. $e^+e^- \rightarrow \phi \rightarrow K_S K_L \rightarrow \pi^+\pi^- + \pi^+\pi^ \Rightarrow \Gamma_S, \ \Gamma_L, \ \Delta m, \ [\Re, \Im(\eta_i, \ \delta \dots)]$

 $I(f_1, f_2, \Delta t) = ..2 |\eta_1| |\eta_2| e^{-\Gamma \Delta t/2} \cos(\Delta m \Delta t + \phi_1 - \phi_2)$



2. The rare $K_{\rm S} \rightarrow \pi^0 l^+ l^-$ decays

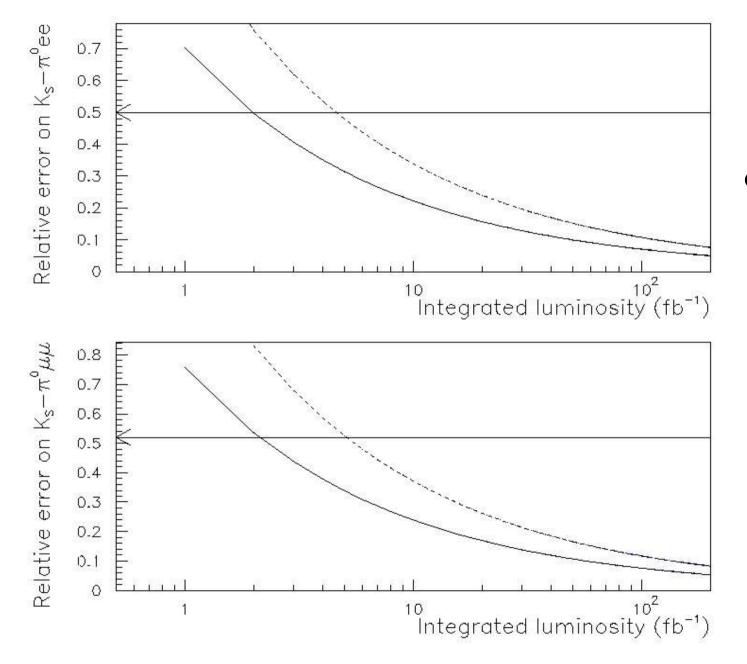
Within kaon physics we can identify 4 golden modes [channels where it is possible to extract interesting & complementary short-distance info about flavour mixing]:


$$K^+ \rightarrow \pi^+ \nu \nu$$
 $K_L \rightarrow \pi^0 e^+ e^-$
 $K_L \rightarrow \pi^0 \nu \nu$ $K_L \rightarrow \pi^0 \mu^+ \mu^-$

In the case of the two $K_L \to \pi^0 l^+ l^-$ channels, it is necessary to measure also the corresponding $K_S \to \pi^0 l^+ l^-$ rates in order to extract the interesting s.d. info:

 $B(K_L \to \pi^0 e^+ e^-)^{[\text{SM}]} = (3.7 \pm 1.0) \times 10^{-11} \qquad [\approx 50\% \text{ due to short dist.}]$ $B(K_L \to \pi^0 \mu^+ \mu^-)^{[\text{SM}]} = (1.5 \pm 0.3) \times 10^{-11} \qquad [\approx 30\% \text{ due to short dist.}]$

ຍ 0.35 ເ Irreducible theoretical error Relative error on K_L 0.2 0.1 0.1 0.0 0 below 10% present large errors due to the large exp. uncertainty on 0.15 0.2 0.25 0.3 0.350.4 0.450.5 0.55 $B(K_S \rightarrow \pi^0 l^+ l^-)$: Relative error on $K_s - \pi^0 ee$ 0.4 Relative error on K₋m^{0,4}, 0.32 0.22 0.5 0.02 0.1 0.02 0.1 0.02 0.1 $B_{S}(e^{+}e^{-}) \approx (6.0 \pm 2.9) \times 10^{-9}$ $B_{\rm S}(\mu^+\mu^-) \approx (2.9 \pm 1.4) \times 10$ ☆ ☆ NA48/1 '03-'04 公 0.2 0.35 0.55 0.15 0.25 0.3 0.4 0.5 0.45 Relative error on $K_s - \pi^0 \mu \mu$

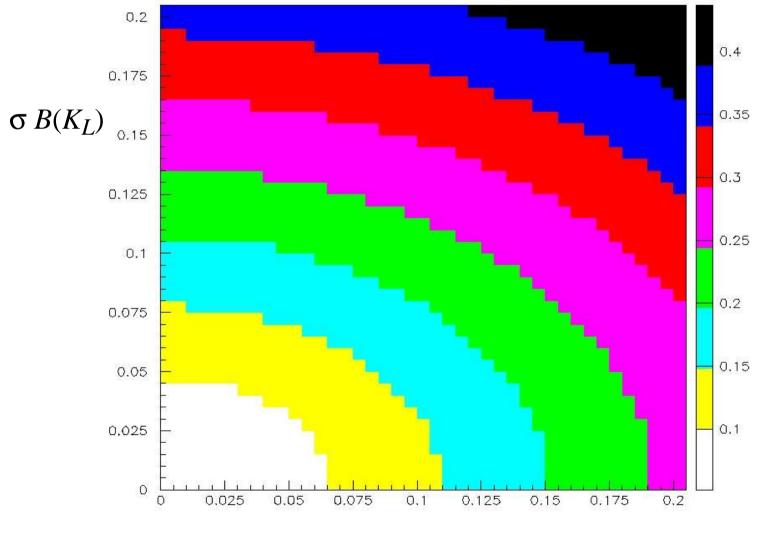

Very interesting candidates for future dedicated experiments @ fixed target...

- More observables to be studied [Dalitz plot distribution]
- Different sensitivity to NP with respect to $K_L \rightarrow \pi^0 \nu \nu$

the 3 decay modes $K_L \rightarrow \pi^0 + e^+ e^-, \mu^+ \mu^-, \nu\nu$ are sensitive to different short-distance structures \Rightarrow 3 independent info on CPV beyond the SM

...provided it is possible to measure precisely also the K_s channels

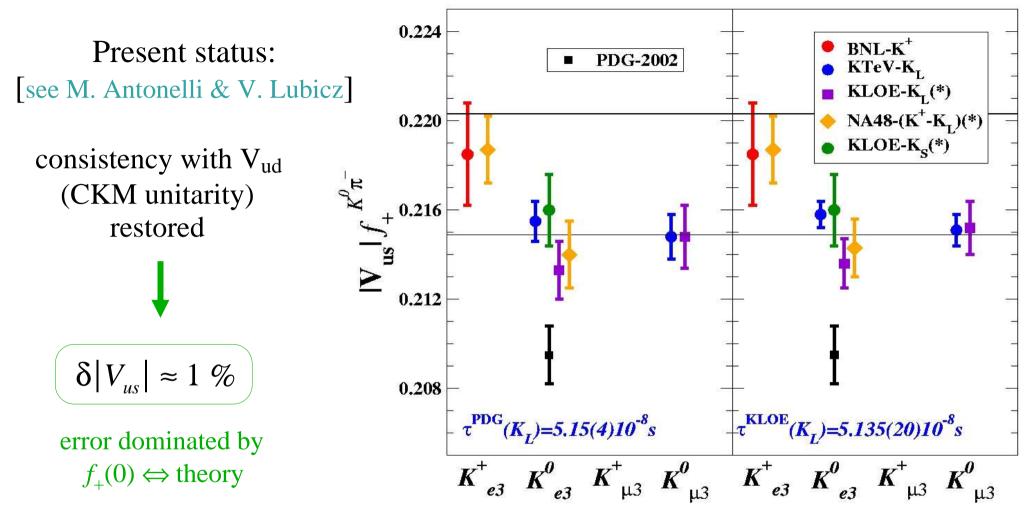
 \Rightarrow @ super Φ factory ?

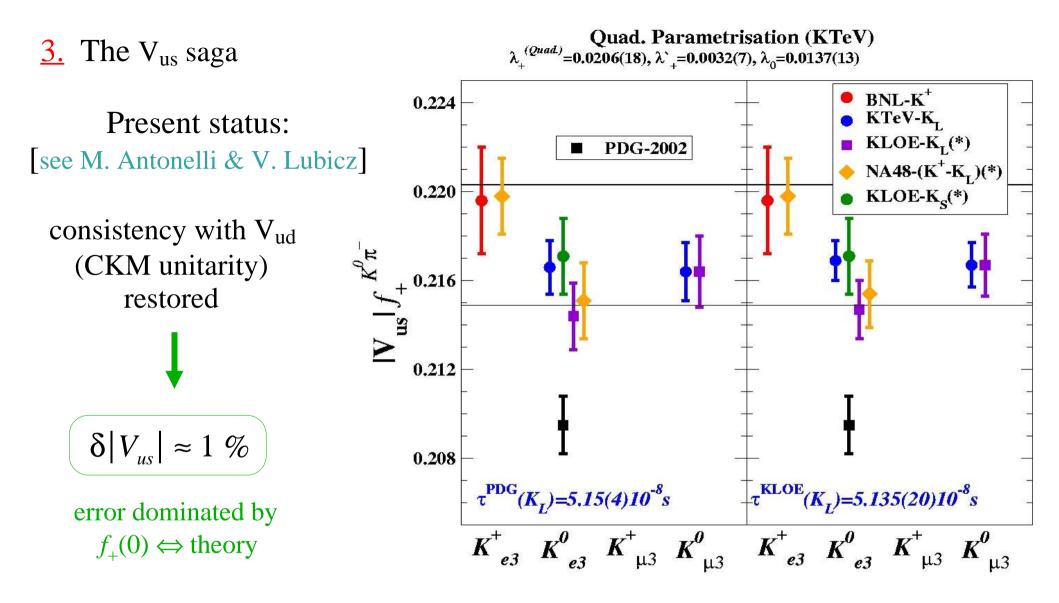


F. Bossi, V. Patera & G.I., work in prog. '05

With ~ 30 fb⁻¹ and a more optimized detector [vertex detect.] it would be possible to reach the 15% level on both $B(K_S \rightarrow \pi^0 l^+ l^-)$

Relative error on $\text{Im}(V_{\text{ts}}^*V_{\text{td}})$

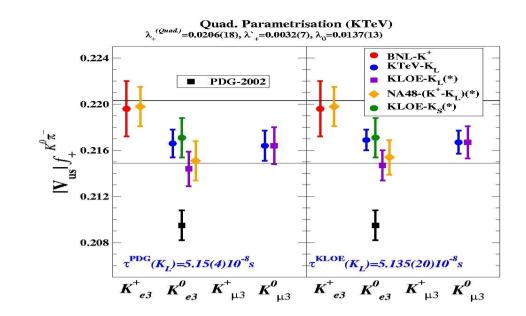

vs. relative exp. errors on $B(K_S \rightarrow \pi^0 e^+ e^-) \& B(K_L \rightarrow \pi^0 e^+ e^-)$



 $\sigma B(K_S)$

<u>3.</u> The V_{us} saga

Linear Parametrisation(KTeV+ISTRA+) $\lambda_{+}^{(lin)}=0.0281(4), \lambda_{0}^{(lin)}=0.017(1)$



..but the situation is more complicated than it appears at first sight ... $\underline{3.}$ The V_{us} saga

Present status: [see M. Antonelli & V. Lubicz]

 $\delta |V_{us}| \approx 1 \%$

With higher stat. & better syst. there is certainly room for improvements:

- SU(2) breaking not yet tested at the th. level (~ 0.3%)
- → Exp. studies of the f.f. beyond the linear approximation are a key ingredient to reduce the error on V_{us} [similar to the hadronic moments in B→ Xlv]

$$f_{0}(x, y) = 1 + \lambda_{0} x + \delta y^{2} + \lambda_{2} x^{2} + \dots$$

$$x = (p_{K} - p_{\pi})^{2} / m_{\pi}^{2}$$

$$y = (m_{K}^{2} - m_{\pi}^{2}) / m_{K}^{2}$$

$$F_{K} / F_{\pi}, \lambda_{0}, \dots$$
CHPT [Bijnens & Talavera, *et al.*]

Natural goal for a high- or medium/high-*L* Φ factory

The ambitious goal of $\delta |V_{us}| \sim 0.1\%$ is not impossible !

<u>4.</u> $\pi\pi$ phases *et al*.

There are many interesting aspects of QCD at low energies which can still be studied in the kaon sector [most notable example: the precise determination of $\pi\pi$ phases from $K^{\pm} \rightarrow \pi^{+}\pi^{-} l\nu$]

Many of them are described in the 2nd DA Φ NE Handbook, others strategies have recently been inspired by the new precise NA48/2 data [e.g. the extraction of $\pi\pi$ phases from $K \rightarrow 3\pi$ [Cabibbo '04, Cabibbo & G.I. '05]

Probably even more are still to come...

Not easy to anticipate the potential impact of a future DA Φ NE upgrade in this context

but there are good chances for substantial contributions

Beyond kaon physics

A Φ factory is not-only a kaon factory, but also

- an efficient η and η' factory
- an excellent laboratory for low-energy scalar mesons: $f_0, a_0, (\sigma ?)$ [see F. Ambrosino]

Several measurements in this sector are still statistically limited [E.g.: $d\Gamma(\eta \rightarrow \pi^0 \gamma \gamma)$, $\Gamma(\eta \rightarrow \mu^+ \mu^-)$, ... $d\Gamma(\Phi \rightarrow S_0 \gamma \rightarrow KK\gamma)$]

Interesting opportunities to improve our knowledge about non-perturbative aspects of QCD [within some of the most simple & fundamental hadronic systems]

• (my) conclusions

The physics case of a high-intensity Φ factory with $L [cm^{-2}s^{-1}] \ge 10^{33}$ is worth to be explored:

Not a unique outstanding goal, but a series of interesting meas. in the K sector:

- <u>clear targets</u> [V_{us} & K₁₃ f.f., rare K_S decays, CPT tests]
- <u>less clear targets</u> [K^{\pm} -asym., interferometry, K_{14} ,...] \Rightarrow more work on real data needed to better quantify the potential impact
- + non-K program at the $\Phi [f_0, a_0, \eta, \eta'] [clear]$
- + kaonic atoms / hypernuclei [compatibility with the K prog. to be explored]

Natural completion of the DA Φ NE program

• (my) conclusions

The physics case of a high-intensity Φ factory with $L [cm^{-2}s^{-1}] \ge 10^{33}$ is worth to be explored:

Not a unique outstanding goal, but a series of interesting meas. in the K sector:

- <u>clear targets</u> [V_{us} & K₁₃ f.f., rare K_S decays, CPT tests]
- <u>less clear targets</u> [K^{\pm} -asym., interferometry, K_{14} ,...] \Rightarrow more work on real data needed to better quantify the potential impact
- + non-K program at the $\Phi [f_0, a_0, \eta, \eta'] [clear]$
- + kaonic atoms / hypernuclei [compatibility with the K prog. to be explored]

A few important remarks:

- * The most clear goals in this program will be less interesting if the time scale is too long [link/competition within the field of flavour physics]
- ★ The program is challenging from the exp. point of view [huge statistics & high precision] & requires non-trivial hardware modifications [detector optimized for KS physics] ⇒ size of the exp. collaboration not to be underestimated

• (my) conclusions

The physics case of a high-intensity Φ factory with $L [cm^{-2}s^{-1}] \ge 10^{33}$ is worth to be explored:

Not a unique outstanding goal, but a series of interesting meas. in the K sector:

- <u>clear targets</u> [V_{us} & K₁₃ f.f., rare K_S decays, CPT tests]
- <u>less clear targets</u> [K^{\pm} -asym., interferometry, K_{14} ,...] \Rightarrow more work on real data needed to better quantify the potential impact
- + non-K program at the $\Phi [f_0, a_0, \eta, \eta'] [clear]$
- + kaonic atoms / hypernuclei [compatibility with the K prog. to be explored]

In addition to the natural machine and experimental considerations the time schedule of this program represents a key point