Physics at a Super B Factory

Les Rencontres de Physique de la Vallée d'Aoste La Thuile, February 27- March 5, 2005 Francesco Forti, INFN-Pisa

Beauty of beauty factories

Impressive physics program achieved so far at B-Factories

- B mesons are a powerful laboratory
 - Sizable mixing and CP violation
 - HQET works and has predictive power
 - Many transitions probe different quantities
- e⁺e⁻ machines are fantastic probes
 - Very clean environment: ¹/₂-track trigger
 - Coherent initial state allows true interference measurements and high tagging efficiency with low dilution
- Luminosity counts
 - Large samples allow precision measurements
 - Rare and very rare decays are becoming more and more crucial.

У	es	te	rd	ay	

Experiments	Number of $b\overline{b}$ events	Environment	Characteristics
	$(\times 10^{6})$		
ALEPH, DELPHI	~ 1 per expt.	Z ⁰ decays	back-to-back 45 GeV b-jets
OPAL, L3		$(\sigma_{bb} \sim 6 { m nb})$	all B hadrons produced
SLD	~ 0.1	Z ⁰ decays	back-to-back 45 GeV b-jets
		$(\sigma_{bb} \sim 6 {\rm nb})$	all B hadrons produced
			beam polarized
ARGUS	~ 0.2	$\Upsilon(4S)$ decays	mesons produced at rest
		$(\sigma_{bb} \sim 1.2 { m nb})$	B^0_d and B^+
CLEO	~ 9	$\Upsilon(4S)$ decays	mesons produced at rest
		$(\sigma_{bb} \sim 1.2 { m nb})$	B^0_d and B^+
CDF	\sim several	$p\overline{p}$ collisions	events triggered with leptons
		$\sqrt{s} = 1.8 \text{ TeV}$	all B hadrons produced

Today

March 2, 2005

F.Forti - Physics at a Super B Factory

More B Physics?

What:

- PEP-II/Babar & KEK-B/Belle currently at peak luminosity »10³⁴ cm⁻²s⁻¹
- Integrated sample of about 1ab⁻¹ for each machine by 2009
- Upgrade ideas/proposals to increase luminosity by a factor 10 to 100, for a sample size of 5-50 ab⁻¹.

Why:

- High precision Standard Model Unitarity Triangle (UT) measurements
- New Physics (NP) contributions to rare decays B.R. & Asymm.
- Distinctive patterns may discriminate between models
- How:
 - Different upgrade scenarios are being considered
 - Detector and machine complexity/cost undergo a phase transition around a few x 10³⁵ cm⁻²s⁻¹
- When:
 - In the era of LHCb, (BTeV) and LHC experiments.
 - Competitiveness and complementarity with hadron machines

Tomorrow

Yes, more B Physics!

- Unitarity Triangle sides measurements
 - From (semi)leptonic decays, inclusive or exclusive
 - $\blacksquare |V_{ub}|, |V_{cb}|, |V_{td}|$
- UT angles precision measurements
 - $b \rightarrow s$ penguin transitions very sensitive to new physics
 - CPV Asymmetries in $B \rightarrow \phi K_s$, $K_s \pi^0$ compared with sin2 β .
 - α measurement with $B \rightarrow \pi\pi$ and $\rho\rho$; direct CPV
 - γ measurement with B \rightarrow DK or similar channels.
- Rare decays
 - Exclusive and inclusive b \rightarrow sgBFs, direct asymmetries, photon helicities
 - Exclusive and inclusive $b \rightarrow sl^+l^-$ BFs, A_{FB} , CP asymmetries
 - B decays to states with large missing energy, such as $B_{(d,s)} \rightarrow \tau^+\tau^-$, $B \rightarrow K^{(*)}nn$, $b \rightarrow snn$, $B \rightarrow D^{(*)}tn_t$, $B \rightarrow X_C tn_t$

How to detect NP in B experiments.

- Experimental sensitivities for B experiments (2 to 50 ab⁻¹)
 Statistical and systematical
- Theoretical uncertainties of the reference points based on SM.
 - Given these uncertainties, is there still any sensitivity to NP?
 - $= Q_{NP} \dot{Q}_{SM} > 3 \sigma_{SM}(Q) ?$
- Comparison with sensitivities from the planned hadron collider experiments.
 - Can the super-B measurements compete and/or provide better information than Hadron experiments?
 - Note that super B Factories cannot do B_s
 - mixing is too fast \rightarrow no resolving power
 - Y(5s) cross section smaller by a factor ~5 wrt Y(4s)
 - decay itself mostly spectator: not competive with B_d

SLAC-R-709 December, 2004

The Discovery Potential of a Super B Factory

Familia Quartae Urbs

Magnae Tangentis Betae Collis

Extra Dimensionum Urbs

Norma Regula Oceanus

Massa: Interpositon's

Supersymmetriae cum Louissimo gracta Litan

Simus

S whencoloris Parnini

JoAnne L. Hewett and David G. Hitlin, Editors

The Discovery Potential of a Super B Factory

Proceedings of the 2003 SLAC Workshops

Editors:

JoAnne Hewett SLAC

Conveners:

Yuval Grossman Technion

JoAnne Hewett SLAC

Gudrun Hiller^a University of Munich

Tobias Hurth CERN

Urs Langenegger^b University of Heidelberg

Zoltan Ligeti Lawrence Berkeley National Laboratory

^a Present address: CERN

^b Present address: ETH, Zurich

^c Present address: Cornell University

Available on the World Wide Web, with figures in full color, at http://www.slac.stanford.edu/cgi-wrap/pubpage?slac-r-709

David G. Hitlin California Institute of Technology

Yasuhiro Okada KEK

Aaron Roodman SLAC

Anders Ryd^e California Institute of Technology

Abner Soffer Colorado State University

lain Stewart Massachusetts Institute of Technology

b→s penguin

Intriguing hints from penguins

Observable	SM: reference point	SM: Expected range
Time dependent CP Measurements b→sss(bar) & b→sdd(bar) & b→sγ	S	Educated guess
S(B→ \oplus K_s)	~Sin2β	sın2β–5 <0.25 (0.05)
S(B→η′Ks)	~Sin2β	<i>s</i> in2β−5 <0.3 (0.1)
$S(B \rightarrow K_s \pi^0)$	~Sin2β	<i>s</i> in2β−S <0.2 (0.15)
S(B \rightarrow K* ⁰ γ) (with K* \rightarrow K _s π^0)	~2(m _{s/} m _b) Sin2β	5 <0.1 (?)
$b \rightarrow s/d\gamma \& b \rightarrow s/d (I^+ I^-)$: Rates and $A_{cp(dir)}$		
$Acp(b \rightarrow s \gamma) [Acp(b \rightarrow d \gamma)]$		0.6% [-16%] (?)
$[\Gamma(B \rightarrow K^* + \gamma) - \Gamma(B \rightarrow K^* 0 \gamma)]/(sum)$	~0 (isospin breaking)	5 to 10% (?)
Γ (b→d γ)/ Γ (b→s γ)	Vtd/Vts (from mixing)	
A _{cp} (B→s + -) A _{cp} (B→d + -)		<0.5% (0.05% for K* l+ l-) ~(4.4+/-4)%
$B(B \rightarrow K\mu^+\mu^-)/B(B \rightarrow Ke^+e^-)$	1	1.0+/-0.0001
A ^{FB} (K*l+ l-):s ₀ (zero crossing)		0.162+/-0.008 (5%)
A ^{FB} (K*l+ l-):CP asymmetry	~0	
CPV in mixing: (q/p)	~1	
Very rare decays: $B \rightarrow \mu^+ \mu^-$ $B \rightarrow \tau^+ \tau^-$		
$B \rightarrow X \tau^+ v$: Rate and τ polarization		~2%

Soni: m_s is the "current" mass: ($m_s \sim 150 \pm -50 \text{ MeV}$), $m_b \sim 5 \text{ GeV}$

→ Theory error ~0.01 to 0.02 (??) (~30% of SM value of S) 13

CP Violation in $b \rightarrow$ s penguins

Rare Decays – New Physics – <i>CPV</i> (?)		<i>e⁺e⁻</i> Precision			1 Year Precision	
Measurement	Goal	3/ab	10/ab	50/ab	LHCb	BTeV
$\underline{S(B^0 \rightarrow \varphi K_{\underline{S}})}$	SM: <0.25 (0.05)	0.08	0.05	0.02 (?)	0.08?	0.04?
$S(B^0 \rightarrow \phi K_S + \phi K_L)$	SM:<0.25 (0.05)					
$S(B \rightarrow \eta' K_s)$	SM:<0.3 (0.1)	0.06	0.03	0.01		
$S(B \rightarrow K_s \pi^0)$	SM:<0.2 (0.15)	0.08	0.05	0.04 (?)		
$\underline{S(B \rightarrow K_{\underline{s}} \pi^0 \gamma)}$	SM:<0.1	0.11	0.06	0.04 (?)		
$\underline{A}_{\underline{CP}}(\underline{b} \rightarrow \underline{s\gamma})$	SM: <0.6%	2.4%	1%	0.5% (?)		
$A_{CP}(B \rightarrow K^* \gamma)$	SM: <0.5%	0.59%	0.32%	0.14%	-	-
<i>CPV</i> in mixing $(/q/p/)$		<0.6%			Х	Х

NP observables in s/d l+l- decay

Universal extra dimension effects Forward Backward Asymmetry

Recoil Physics

My personal conclusions

- B Physics is far from over
 - Unitarity Triangle precision measurements mostly done by the end of the current program
 - At around 1-2 GB-pairs theoretical errors begin to dominate
 - NP will leave its marks in low energy processes:
 - although LHC will hopefully measure masses, the determination of couplings and phases will require clean, precise measurements at B Factories and LC
 - hadron machines do play an important role, but many channels are out of reach to them: B_s and very rare processes are their atout
 - large samples at e+e- machines (10-50 GB-pairs) are needed to reach the required sensitivity
- B Physics is not too popular these days (at least in the US) ...
 - BTeV has been "terminated"
 - SLAC has decided to focus on the LC effort
 - but upgrade program still vigorously pursued at KEKB/BELLE
 - although KEKB/SuperBelle upgrade may not be ambitious enough
 - → Joint workshop at Hawaij, April 20-22
- In but in fact is still a very powerful laboratory. Strong endorsement of the Super B Factory by the community.

BACKUP

March	2,	2005	
-------	----	------	--

Sensibility to NP

Ciuchini, Franco, Martinelli, Masiero, & Silvestrini

Theoretical uncertainties

Measurement (in SM)	Theoretical limit	Present error
$B o \psi K_S$ (β)	$\sim 0.2^{\circ}$	1.6°
$B ightarrow \phi K_S, \; \eta^{(\prime)} K_S,$ (eta)	$\sim 2^{\circ}$	$\sim 10^{\circ}$
$B \to \pi \pi, \ \rho \rho, \ \rho \pi$ (α)	$\sim 1^{\circ}$	$\sim 15^\circ$
$B \to DK$ (γ)	$\ll 1^{\circ}$	$\sim 25^{\circ}$
$B_s ightarrow \psi \phi ~(eta_s)$	$\sim 0.2^{\circ}$	—
$B_s \rightarrow D_s K ~(\gamma - 2\beta_s)$	$\ll 1^{\circ}$	_
$ V_{cb} $	$\sim 1\%$	$\sim 3\%$
$ V_{ub} $	$\sim 5\%$	$\sim15\%$
$B \to X \ell^+ \ell^-$	$\sim 5\%$	$\sim 25\%$
$B \to K^{(*)} \nu \bar{\nu}$	$\sim 5\%$	

Ligeti, ICHEP 2004

Unitarity Triangle - Sides

Unitarity Triangle - Sides			e ⁺ e ⁻ Preo	1 Year Precision		
Measurement	Goal	3/ab	10/ab	50/ab	LHCb	B TeV
V_{ub} (inclusive)	syst =5-6%	2%	1.3%			
V_{ub} (<u>exclusive</u>) (π , ρ)	syst=3%	5.5%	3.2%			
V_{cb} (inclusive)						
V_{cb} (exclusive)						
$f_b \ \mathcal{B}(B \rightarrow \mu \nu)$	SM: <i>B</i> ~5x10 ⁻⁷					
$f_b \underline{\mathcal{B}}(\underline{B} \rightarrow \tau \nu)$	SM: <i>B</i> ~5x10 ⁻⁵	3.3 σ	6 σ	13σ f_b to ${\sim}10\%$		
$V_{td}/V_{ts} \ (\rho\gamma/\mathrm{K*\gamma})$	Theory 12%	~3%	~1%			

Unitarity Triangle - Angles

Unitarity Triangle - Angles	e	+e- Precisio	on	1 Year Precision	
Measurement	3/ab	10/ab	50/ab	LHCb	BTeV
$\underline{\alpha \ (\pi\pi)} (S_{\pi\pi}, B \rightarrow \pi\pi BR's + isospin)$	6.7°	3.9°	2.1°	-	-
α (ρπ) (Isospin, Dalitz) (syst \geq 3°)	3, 2.3°	1.6, 1.3°	$1, 0.6^{\circ}$	2.5° -5°	4°
α (pp) (penguin, isospin, stat+syst)	2.9°	1.5°	0.72°		
$\beta (J/\psi K_S)$ (all modes)	0.3°	0.17°	0.09°	0.57°	0.49°
$\gamma (B \rightarrow D^{(*)}K) (ADS)$		2-3°		~10°	<13°
<u>γ (all methods)</u>		1.2-2°		7°	8°

Theory: $\alpha \sim 1^{\circ} \beta \sim 0.2^{\circ} \gamma <<1^{\circ}$

F.Forti - Physics at a Super B Factory

More Rare decays precision

Rare Decays – New Physics		<i>e⁺e⁻</i> Precision			1 Year Precision	
Measurement	Goal	3/ab	10/ab	50/ab	LHCb	BTeV
$\Gamma(b \rightarrow dg) / \Gamma(b \rightarrow sg)$					-	-
$\underline{\mathcal{B}}(B \rightarrow D^{(*)} \tau \nu)$	SM: <i>B</i> : 8x10 ⁻³	10.2%	5.6%	2.5%	-	-
$\underline{\mathcal{B}}(B \longrightarrow s \nu \nu) \ (K^{-,0}, K^{*-,0})$	SM:Theory ~5% 1 excl: 4x10 ⁻⁶			~3σ	-	-
$\mathcal{B}(B \rightarrow invisible)$		<2x10-6	<1x10 ⁻⁶	<4x10 ⁻⁷	-	-
$\mathcal{B}(B_d \rightarrow \mu \mu)$		-	-		1/2	1/2
$\mathcal{B}(B_d \rightarrow \tau \tau)$		-	-		-	-
$\mathcal{B}(\tau \rightarrow \mu \gamma)$			<10-8		-	-

$b \rightarrow sl^+l^-$ precision

New Physics – $K1^{+1}$, $s1^{+1}$		e ⁺ e ⁻ Precision			1 Year Precision	
Measurement	Goal	3/ab	10/ab	50/ab	LHCb	BTeV
$\mathcal{B}(B \longrightarrow Km^{+}m) / \mathcal{B}(B \longrightarrow Ke^{+}e^{-})$	SM: 1	~8%	~4%	~2%	Х	Х
$A_{CP}(B \longrightarrow K^* l^+l^-) \text{ (all)}$ (high mass)	SM: < 0.05%	~6% ~12%	~3% ~6%	~1.5% ~3%	~1.5% ~3% (?)	~2% ~4% (?)
$\underline{A^{FB}(B \longrightarrow K^*l^+l^-): s_0}$	SM: ±5%	~20%	~9%	5%	~12%	
$A^{FB}(B \longrightarrow K^*l^+l^-) : A_{CP}$						
$A^{FB}(B \rightarrow sl^+l^-) : s_0$		27%	15%	6.7%		
$A_{FB} \left(B \rightarrow s l^+ l^- \right) \colon C_9, C_{10}$		36-55%	20-30%	9-13%		