

Laser-plasma particle acceleration

Jérôme Faure

Laboratoire LOA, ENSTA - CNRS - École Polytechnique, 91761 Palaiseau cedex, France

Collaborators

Laboratoire d'Optique Appliquée (LOA), France V. Malka, Y. Glinec, J. Santos F. Burgy, B. Mercier, J.-P. Rousseau (laser)

University of Tokyo, Japan T. Hosokai (experiment)

University of Dusseldorf, Germany A. Pukhov, S. Gordienko, S. Kiselev (simulations)

Laboratoire pour l'Utilisation des Lasers Intenses (LULI), France J.-R. Marquès, F. Amiranoff

Centre de Physique Théorique P. Mora, A. Solodov

CEA DAM E. Lefebvre

Blackett Laboratory, Imperial College, England Z. Najmudin, K. Krushelnick

Laser plasma-based accelerators

Goals:

- GeV accelerator
- Table-top synchrotron

E fields > 100 GeV/m → compact accelerators
 ultrashort electron bunches < 50 fs

Particle Accelerators Why Plasmas?

Tajima & Dawson, PRL 43, 267 (1979)

Conventional Accelerators

- Limited by peak power and breakdown
- 20-100 MeV/m
- Large Hadron Collider (LHC) -- 27km, 2010
- Plans for "Next" Linear Collider (NLC) -- 100km ?

<u>Plasma</u>

- No breakdown limit
- 10-100 GeV/m

High electric fields in plasmas: plasma waves

For accelerating relativistic particles: $v_p \sim c$

 $T_p \propto n_{\scriptscriptstyle P}^{-1/2}$

Bucket size is T_p/2=15 fs for n_e=10¹⁹ cm⁻³

Plasma waves are excited by the ponderomotive force

The ponderomotive force of the laser field can transform the transverse laser field into a charge separation and a propagating plasma wave

An electromagnetic field acts as a pressure on charged particles :
 it expels the electrons from high-intensity zones

• Ions do not move because they are heavier

Laser wakefield (like the wake of a boat)

 $c\tau \sim \lambda_p \rightarrow$ Short pulses are better

Self-modulated laser wakefield

Raman forward instability

Nonlinear wakes 3-D PIC OSIRIS Simulation

Laser Wake

Electron trajectory in plasma wave

 $W = 4m_e c^2 \gamma_p^2 \frac{\delta n}{n} = 1 \text{ GeV for a dn/n=1 plasma wave on a}$ 1 cm length in a n_e=10¹⁸ cm⁻³ plasma

3 Limits to Energy gain $\Delta W = eE_zL_{acc}$

• Diffraction:

$$L_{dif} \cong \pi L_R = \pi^2 w_0^2 / \lambda$$

order mm!

(but overcome w/ channels or relativistic self-

• Dephasing: • \mathbf{V}_{gr} \mathbf{C} $\mathbf{L}_{dph} = \frac{\lambda_p/2}{1 - V_{gr}/c}$ order 1 cm x 10¹⁸/n_o

Depletion:

For small $a_0 \rightarrow L_{dph}$ For $a_0 \rightarrow 1$ $L_{dph} \sim L_{de}$

$$\Delta W_{ch}[MeV] \sim 60 \left(\lambda_p / w_0\right)^2 P[TW]$$

What kind of lasers ?

• Laser Intensity:
$$I = \frac{E}{S} \times \frac{1}{\tau}$$

Normalized potential vector

$$a = (I\lambda^2)^{1/2}$$

$$F \propto -\nabla a^2$$

- Ponderomotive force
- ultra-short lasers: t < 1 ps
- powerful: P=10-100 TW
- ultra-intense: I > 10¹⁸ W/cm²

More compact lasers

Shorter pulses

Less energy

First experiments: large facilities

Rutherfold Lab (UK 1996): Nd:Glass laser LULI (1994-1998): Nd:Glass laser

Big lasers: > 100 J per shot in 1 ps. One shot every 20-40 minutes

Proof of principle experiments

VULCAN Laser at Rutherford, UK

Interaction chamber

Laser room

Laser wakefield proof-of-principle experiment at Ecole Polytechnique

Wakefield : Acceleration in 1.5 GV/m

The 3-MeV electrons are accelerated up to ≈ 4.5 MeV In a maximum field of 1.5 GV/m

2.5 J, 350 fs, 10¹⁷W/cm², 0.5 mbar He

Rutherford experiment (1995): $c\tau >> \lambda_p$ No external injection

Self-modulated laser wakefield: $c\tau >> \lambda_p$ Observation of an electron beam

Modena et al. Nature 377, (95)

Electrons come from "wavebreaking"

Self-modulation instability: causes exponential growth of plasma wave

7.01

Massive trapping and acceleration: generation of an electron beam

Recent experiments: small facilities

 Experimental exploration allows constant progress in this field

New experiments use

- ultrashort pulses (30 fs)
- · low energy (1 J)
- Small scale lasers
- High repetition rate (10 Hz)

Laser "Salle Jaune"

Oscillator : 2 nJ, 15 fs

Stretcher : 500 pJ, 400 ps

8-pass pre-Amp. : 2 mJ

Nd:YAG : 10 J

5-pass Amp. : 200 mJ

4-pass, Cryo. cooled Amp. : < 3.5 J, 400 ps

Après Compression : 2 J, 30 fs, 0.8 μm, 10 Hz, 10 ⁻⁷

Interaction chamber

Experimental set-up

Electron spectrum: Maxwellian distribution

2D PIC simulations (courtesy Erik Lefebvre)

Breakthrough in the field

In all previous experiments: maxwellian-like energy distribution, and 100 % energy spread

- \rightarrow difficult to transport the beam and to refocus it
- \rightarrow electron bunch stretches as it propagates (does not stay short)
- \rightarrow few high energy electrons (1 pC at 100 MeV +/- 5 MeV)

New generation of experiments: monoenergetic beams

LOA: Faure et al., Nature 431, (2004) LBNL: Geddes et al., Nature 431 (2004) Imperial college: Mangles et al., Nature 431 (2004)

Recipe:

- \rightarrow Longer interaction length (several mm instead of hundreds of μ m)
- \rightarrow Shorter pulses

Disease control Europe plays catch-up

The Earth's hum Sounds of air and sea

technology feature RNA interference

Protein folding Escape from the ribosome

Human ancestry One from all and all from one

Quasi-monoenergetic electron beams in plasmas: virtual or real ?

Very nonlinear wakefield Bubble formation

Pukhov & Meyer-ter-Vehn, Appl. Phys. B 2002

Improvement of spatial quality: density scan

Improvement of electron energy distribution

Laser axis

Quasi-monoenergetic electron spectrum at 170+/-20 MeV

SMLWF / Bubble regime: Improvement of the charge

Charge at high energy (170 MeV) improved by more than 1000

Conclusions

- Recent results : improvement of beam quality
 - spatial beam quality (5-10 mrad)
 - \cdot charge at high energy
 - control of electron spectrum: MONOENERGETIC
- Work in progress
 - measurement of bunch duration : evidence of sub-30 fs
- Future:
 - electron sources up to \approx 1 GeV (nC, <1 ps)

Perspectives

- Main problem with current result: beam is unstable energy spectrum fluctuates
- Cause:
 - \cdot Propagation relies on self-focusing which is an unstable mechanism
 - Injection mechanism is highly nonlinear
- Solution to propagation:
 use a guiding device

- Solution to injection
 - use external injector. But needs to develop ultrashort injectors
 - trigger injection using another laser beam through a linear mechanism (such as interferences)

Particle Accelerators Requirements for High Energy Physics

- High Energy
- High Luminosity (event rate) - L=fN²/4 $\pi\sigma_x\sigma_v$
- High Beam Quality
 - Energy spread $\delta\gamma/\gamma \sim .1 10\%$
 - Low emittance: $\varepsilon_n \sim \gamma \sigma_v \theta_v < 1$ mm-mrad
- Low Cost (one-tenth of \$6B/TeV)
 - Gradients > 100 MeV/m
 - Efficiency > few %

Requires a feasibility study:

- Think tank ALPAGE at Ecole Polytechnique (LULI, LOA, LLR, LAL...)
- Workshop will be organized in June on this subject (jerome.faure@ensta.fr)

Beam-driven Wakefield Accelerators

• Space charge of beam displaces plasma electrons

- Plasma ions exert restoring force =>
 - •Net Focusing force on beam (F/r= $2\pi ne^2/m$) No diffraction
 - •Space charge oscillations (short beam)
- Wake Phase Velocity = Beam Velocity (like wake No dephasing
- Wake amplitude 🛛

$$\sigma N_b / \sigma_z^2$$

PWFA Experiments @ SLAC Share Common Apparatus

Courtesy P. Muggli USC / UCLA /SLAC

E164X Breaks GeV Barrier

L≈10 cm, $n_e \approx 2.55 \times 10^{17} \text{ cm}^{-3} \text{ N}_b \approx 1.8 \times 10^{10}$

Energy gain exceeds ≈ 4 GeV in 10 cm

Courtesy P. Muggli USC / UCLA /SLAC