# **Di-Boson Production and SM/SUSY Higgs Searches at the Tevatron**

V. Daniel Elvira (Fermilab) for the DØ & CDF Collaborations



V. Daniel Elvira

1

### **Experimental Limits on M<sub>H</sub>**

- <u>EWWG fit</u> updated in the Summer of 2004 (LEP, SLD, CDF, DØ) Light Higgs favored:  $M_H = 114^{+69}_{-45}$  GeV  $m_H < 260$  GeV at 95% CL
- <u>LEP</u>: Direct searches excluded SM Higgs below 114.4 GeV at 95% C.L.



## **SM & SUSY Higgs Production**



La Thuile, March 4th 2005

#### **Higgs Searches & Tevatron Status**

- <u>Discovery</u> of low mass SM Higgs (5σ) with >8-12 fb<sup>-1</sup> for a 115 GeV Higgs.
- <u>Evidence</u> (3 $\sigma$  excess) for M<sub>H</sub>= 115 GeV with >3 fb<sup>-1</sup>
- <u>Exclusion</u> of m<sub>H</sub><130 GeV</li>
  with >4 fb<sup>-1</sup>
- Excellent performance of the Tevatron in 2004

Need to understand high luminosity environment (triggers, reconstruction)



#### **Di-Boson Production**

Higgs search results presented here use 150-350 pb<sup>-1</sup> of data, far less than the amount of data for Higgs discovery/exclusion

Concentrate on understanding backgrounds,  $\gamma$ , e,  $\mu$  & jet objects, b-tagging,  $\mathbb{E}_T$ 

Di-Boson production is not only a background in Higgs searches:

- Cross Sections provide a test of high- $p_T$  Standard Model processes.
- A SM parameter to measure: the gauge boson "self-couplings"



La Thuile, March 4th 2005

## **Anomalous Couplings**

• Effective Lagrangian for WWZ, WW $\gamma$  to describe new physics in a model independent way: 3 A.C. param.  $L_{WWV} / g_{WWV} = g_V^1 (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu}) + \frac{\kappa_V}{M_W^2} W_{\mu\nu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{\lambda_V}{M_W^2} W_{\lambda\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\lambda}$ 



• Effective Lagrangian for ZZ $\gamma$ : 8 A.C. param. called  $h_1^V$ ,  $h_2^V$ ,  $h_3^V$ , and  $h_4^V$ . CP Violating  $h_1^V$  and  $h_2^V$ , CP Conserving  $h_3^V$  and  $h_4^V$ 

Unitarity violation avoided with form-factor scale

 $\boldsymbol{\lambda}$  to modify form factor at high energy:

 $\frac{\text{Deviation from SM values: }\sigma \text{ increase,}}{\text{especially for high }E_{T} \text{ bosons }(W\gamma/Z\gamma).} S_{VG}$ 

SM h<sub>1</sub>V,..., h<sub>4</sub>V=0 values  $g_v^{1}=\kappa_v=1, \lambda_v=0$ 

$$\frac{\lambda}{\lambda(\hat{s}) = \frac{\lambda}{(1 + \hat{s} / \Lambda^2)^n}}$$

6

• DØ has the most restrictive limits on "h4" and "h2" LEP has most restrictive limits on "h1" and "h3".

• DØ WWγ and WWZ A.C. limits are the tightest from hadron colliders. La Thuile, March 4th 2005 V. Daniel Elvira

## **WW Cross Section**

Measure  $WW \rightarrow l^+ v \ l^- v$  cross section in three channels: II' = ee,  $\mu\mu$ ,  $e\mu$ Data: 252, 224, 235 pb<sup>-1</sup> (ee,  $\mu\mu$ ,  $e\mu$ ) from single or dilepton triggers

- Pre-selection Criteria: Final cuts on: •
- - Two oppositely charged e or  $\mu$  w/
    - $p_{T}$ >15 GeV/c. At least
- $\mathbb{E}_T$  > 30, 40, & 20 GeV in ee,  $\mu\mu$ , & e $\mu$  channels
- Min m<sub>T</sub>,  $\Delta \phi$ (jet,  $E_T$ ),  $\Delta \phi_{uu}$ ,  $\Sigma E_T^{jet}$ , outside

Z window

one has p\_>20 GeV/c Good agreement between data and signal (NLO)+background MC (PYTHIA, data for QCD) after data selection



## WW Cross Section

Measure  $WW \rightarrow l^+ v \ l^- v$  cross section in three channels:  $I = ee, \mu\mu, e\mu$ Data: 184 pb<sup>-1</sup> (ee,  $\mu\mu$ ,  $e\mu$ ) from single lepton triggers

- Lepton Selection:
- Event Selection:
- Two isolated leptons with opposite charge
- Two isolated leptons  $\mathbb{E}_T$  >25 GeV in all ee,  $\mu\mu$ , &  $e\mu$  channels
  - No jets  $E_T$ >15 GeV,  $\Delta \phi(I, \mathbb{E}_T)$ , outside Z

e or  $\mu$  w/p<sub>T</sub>>20 GeV/c. window Good agreement between data and signal+background MC after all cuts





**CDF** 

#### DØ



![](_page_9_Picture_0.jpeg)

Search in three channels:  $H \rightarrow WW^{(*)} \rightarrow l^+ v \ l^- v$  with  $l = ee, \mu\mu, e\mu$ Integrated luminosity 177, 158, 147 pb<sup>-1</sup> for ee,  $\mu\mu$ ,  $e\mu$ 

![](_page_9_Figure_2.jpeg)

![](_page_10_Picture_0.jpeg)

Search in three channels:  $H \rightarrow WW^{(*)} \rightarrow l^+ v \ l^- v$  with  $l = ee, \mu\mu, e\mu$ From inclusive high  $p_T$  lepton triggers: integrated luminosity 184 pb<sup>-1</sup>

![](_page_10_Figure_2.jpeg)

## W + bb Search

174pb<sup>-1</sup> sample with one electron and  $\mathbb{E}_T$  (dominant background for WH)

![](_page_11_Figure_2.jpeg)

La Thuile, March 4th 2005

![](_page_12_Picture_0.jpeg)

![](_page_12_Figure_1.jpeg)

6 evts (4.4  $\pm$  1.17 expected)

95% CL upper limit of 6.6 pb on  $Wb\overline{b}$ production for b with  $p_T^b > 20 \text{ GeV/c}$ and  $\Delta R_{bb} > 0.75$  95% CL upper limit on WH production of 9.0-12.2 pb for Higgs masses of 105-135 GeV/c<sup>2</sup>

Accepted by PRL: hep-ex/0410062

La Thuile, March 4th 2005

![](_page_13_Picture_0.jpeg)

162pb<sup>-1</sup> sample with one electron or muon and  $E_T$ 

![](_page_13_Figure_2.jpeg)

![](_page_14_Picture_0.jpeg)

![](_page_14_Figure_1.jpeg)

95% CL upper limit on the SM  $\sigma(p\overline{p} \rightarrow WH) \times BR(H \rightarrow b\overline{b})$ , 5.5 (4) pb at m<sub>H</sub>=110 (150) GeV, is limited by statistics to one order of magnitude above that the NLO SM prediction for Higgs. La Thuile, March 4th 2005 V. Daniel Elvira

15

## h(bb)bb Search

Search for neutral Higgs in a two-Higgs-doublet SUSY model in a 260 pb<sup>-1</sup> sample of triple b-tagged multi-jet events.

<u>Sample Selection</u>:

- Trigger >3 jets with  $E_T$ >15 GeV,
- Offline cut on  $E_T$  of leading jets optimised for each Higgs mass.
- More than 3 b-tagged jets
- <u>Background</u>:

"QCD heavy flavor" : bbjj, ccjj, cccc, bbcc, bbbb "QCD fakes" : jjjj "Other" : Z(bb,cc), tt

• <u>Theory/Simulation</u>:

NLO SM Higgs production (Campbell et al., Dawson et al.), MSSM (Carena, Mrenna, Wagner), PYTHIA, MAD-GRAPH, ALPGEN La Thuile, March 4th 2005

![](_page_15_Figure_10.jpeg)

## h(bb)bb Search

Limits on signal production cross section and in the tan(beta) vs.  $m_A$  (the mass of the CP-odd neutral Higgs) plane:

![](_page_16_Figure_2.jpeg)

![](_page_17_Picture_0.jpeg)

200 pb<sup>-1</sup> sample from  $\tau$  triggers (lepton+isolated track): two  $\tau$ 's, one decaying into hadrons+v and the other to an  $e/\mu + 2v$ .

- Cuts on lepton pT, Z mass window. To remove light quark bkgnd:
- PYTHIA+ Tauola (signal simul.)

 $\hat{H}_{T} = |p_{T}(tau)| + |p_{T}(tau)| + E_{T} > 50 \text{ GeV}$ 

![](_page_17_Figure_6.jpeg)

## WWy Couplings

Measure  $W(l\nu)\gamma$  (I = e, $\mu$ ) x-section and WW $\gamma$  anomalous couplings from 162, 134 pb<sup>-1</sup> of e,  $\mu$  triggers. Cuts on  $E_{T\gamma,e}$ ,  $M_T$ ,  $\gamma/I$  separation,  $E_T$ 

![](_page_18_Figure_2.jpeg)

![](_page_19_Figure_0.jpeg)

La Thuile, March 4th 2005

# **W**γ **Production**

Measure  $W(l\nu)\gamma$  (I = e, $\mu$ ) x-section from 200 pb<sup>-1</sup> of e,  $\mu$  triggers. Data Selection based on cuts applied to  $E_{T\gamma,e,\mu}$ ,  $m_T$ ,  $\mathbb{E}_T$ 

![](_page_20_Figure_2.jpeg)

La Thuile, March 4th 2005

![](_page_21_Picture_0.jpeg)

Measure  $Z(ll)\gamma$  (II = ee, $\mu\mu$ ) x-section from 200 pb<sup>-1</sup> of e,  $\mu$  triggers. Data Selection based on cuts applied on  $E_{TvI}$ ,  $m_{II}$  invariant mass.

![](_page_21_Figure_2.jpeg)

La Thuile, March 4th 2005

![](_page_22_Picture_0.jpeg)

<u>DØ</u> measured  $WZ \rightarrow 111\nu$  (I = e, $\mu$ ) x-section from 285-320 pb<sup>-1</sup> of e,  $\mu$  triggers. Sample selected with cuts on  $E_{TI}$ ,  $\Delta R$  separation,  $m_Z$  window,  $E_T$ 

- 3 evts observed (2  $\mu\mu\mu$ , 1 eee)  $0.71\pm0.08$  background
- P(0.71 bkgd) -> 3 sig. Evts. is 3.5%
- "Evidence" for WZ Production

 $\sigma(WZ + X)$ DØ Prelim. <13.3 pb (95% C.L.)  $\sigma(p\overline{p} \rightarrow W^{\pm}Z) = \frac{N_{obs} - N_{bkgd}}{L \cdot Br \cdot \varepsilon}$ DØ Preliminary = 4.5<sup>+3.5</sup><sub>-2.6</sub> pb SM Prediction (Campbell, Ellis) = 3.7 \pm 0.1 pb

(CDF Run II: hep-ex/0501021 submitted to PRD)

La Thuile, March 4th 2005

## WWZ Couplings

![](_page_23_Picture_1.jpeg)

- Inner contours: 2D limits. Outer contours are unitarity boundary.
- Best limits in WZ final states.
- First 2D limits in  $\Delta \kappa_z$  vs.  $\lambda_z$  using WZ.
- Best limits available on  $\Delta g_1^Z$ ,  $\Delta \kappa_z$ , and  $\lambda_z$  from direct, model-independent measurements.

![](_page_23_Figure_6.jpeg)

![](_page_23_Figure_7.jpeg)

La Thuile, March 4th 2005

### **Conclusion & Outlook**

- The hunt for the Higgs Boson has started at the Tevatron: SM & SUSY searches
- Di-Boson production Cross Sections measurements have been performed and the tightest limits on A.C. from a hadron collider have been measured by DØ.
- Need ~4 fb<sup>-1</sup> per experiment to exclude  $M_H < 130 \text{ GeV}$
- The Tevatron has performed very well during 2004, collecting ~0.6 fb<sup>-1</sup> per experiment since the beginning of Run II.
- Need to improve understanding of physics objects to meet the challenges of the high luminosity environment

# End of Talk

La Thuile, March 4th 2005

### **Summary on SM Higgs Searches**

#### • SM Results:

DØ: 95% CL for the 3 channels  $\sigma^*BR(H->WW) < 5.7pb$ For  $M_H=160$  GeV

CDF Preliminary: 95% CL for the 3 channels σ\*BR(H->WW) < 5.6pb For M<sub>H</sub>=160 GeV

95% CL limit:  $\sigma^*BR(WH \rightarrow ev bb) < 9.0-12.2 pb$ For M<sub>H</sub>=105-135 GeV

95% CL limit: σ\*BR(WH->e/μ v bb) < 5.5-4.0 pb For M<sub>H</sub>=110-150 GeV

• SUSY Results:  $\sigma < 70-20 \text{ pb for}$  $m_A=90-150 \text{ GeV}$  DØ Preliminary

Exclude significant portion of tan  $\_$  down to 50, depending on  $m_A\,$  and the MSSM scenario:

For m\_=120 GeV:  $\sigma$  < 31 pb-1 @ 95% C.L. , tan $\beta$  < 55 @ 95% C.L. (Max Mixing)

## **Summary on Di-Boson Production**

• Measurement of  $\sigma(WW)$  at 1.96 TeV using dileptons

D0:  $\sigma(WW) = 14.6^{+5.8}_{-5.1}(stat.)^{+1.8}_{-3.0}(sys.) \pm 0.9(lum.)$  pb CDF:  $\sigma(WW) = 13.8^{+4.3}_{-3.8}(stat.)^{+1.2}_{-0.9}(sys.) \pm 0.9(lum.)$  pb

DØ & CDF submitted to PRL

 Evidence for WZ production, σ(WZ) at 1.96 TeV, tightest modelindependent WWZ AC Limits.
 CDF: σ(WZ + ZZ) < 15.2 pb at 95% C.L. DØ Preliminary
 D0: σ(pp → W<sup>±</sup>Z) = 4.5<sup>+3.5</sup><sub>-2.6</sub> pb

•  $W_{\gamma}$  production, tightest  $WW_{\gamma}$  AC limits in Had. Coll.

La Thuile, March 4th 2005

### **LEP & DØ Coupling Results**

| LEP EWK Working Group<br>hep-ex/0412015   | $D0 \cdot 0.03 < A_{10} < 0.07$                                                                                                                    |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| $-0.105 < \Delta \kappa_{\gamma} < 0.069$ | $D00.93 < \Delta K_{\gamma} < 0.97$                                                                                                                |
| $-0.059 < \lambda_{\gamma} < 0.026$       | $-0.22 < \lambda_{\gamma} < 0.22$                                                                                                                  |
| $-0.051 < \Delta g_1^Z < 0.034$           | 1D Limits (holding the other to 0)                                                                                                                 |
| $-0.056 < h_{10}^{\gamma} < 0.055$        | $\Lambda = 1.0 \text{ TeV}  D \emptyset \text{ Preliminary}  \Lambda = 1.5 \text{ GeV}$                                                            |
| $-0.045 < h_{20}^{\gamma} < 0.025$        | $-0.53 < \lambda_Z < 0.56 \qquad -0.48 < \lambda_Z < 0.48 -0.57 < \Delta g_1^Z < 0.76 \qquad 95\% \text{ C.L.} \qquad -0.49 < \Delta g_1^Z < 0.66$ |
| $-0.049 < h_{30}^{\gamma} < 0.008$        | $-2.0 < \Delta \kappa_Z < 2.4 $                                                                                                                    |
| $-0.002 < h_{40}^{\lambda} < 0.034$       |                                                                                                                                                    |
| $-0.13 < h_{10}^{Z} < 0.13$               | $D0: h_{30}^{\gamma}  < 0.22$ $ h_{30}^{Z}  < 0.21$                                                                                                |
| $-0.078 < h_{20}^{Z} < 0.071$             | $ h^{\gamma}  < 0.019$ $ h^{Z}  < 0.019$                                                                                                           |
| $-0.20 < h_{30}^{Z} < 0.07$               |                                                                                                                                                    |
| $-0.05 < h_{40}^{Z} < 0.12$               |                                                                                                                                                    |

La Thuile, March 4th 2005

# The Run II Tevatron

Accelerator Improvements: (Main Injector, Recycler, etc.)

• Higher c-of-m energy  $\sqrt{s} = 1.8 \text{ TeV} \longrightarrow 1.96 \text{ TeV}$ 

20-30% increase in the SM Higgs cross section

Higher antiproton intensity

6x6 \_\_\_\_\_ 36x36 bunches 3.6 μs 396 ns Luminosity: 100 pb<sup>-1</sup> (Run I) > 4 fb<sup>-1</sup> (Run II)

![](_page_29_Picture_6.jpeg)

## **The D0 Detector Upgrade**

#### Added a 2T Magnetic Field

Track  $p_{T}$ , Lepton ID, Jet Calibrations

#### New Silicon & Fiber Tracking

Detectors

Secondary Vertex ID, Tracking

#### Preshower Detector

Improved electron ID

#### Trigger/DAQ Upgrade

Better Efficiency for difficult signals

Finding the Higgs will require all components of the detector

![](_page_30_Picture_11.jpeg)

![](_page_30_Picture_12.jpeg)

## **Detector Characteristics**

Tracking:

![](_page_31_Figure_2.jpeg)

La Thuile, March 4th 2005

## **Higgs Sensitivity Study I**

The Higgs discovery potential for Run II was evaluated in <u>1999</u>, using a parameterized fast detector simulation. (Joint CDF/D0/theorists effort).

- Low mass SM Higgs may be discovered (5σ): i.e. 15 fb<sup>-1</sup> for a 115 GeV Higgs.
- Assumptions: D0 & CDF data combined, 55% b-tagging efficiency (central region, high p<sub>T</sub>), 10% dijet mass resolution.

hep-ph/0010338

![](_page_32_Figure_5.jpeg)

## **Higgs Sensitivity Study II**

.....and re-evaluated in 2003, using a detailed detector simulation and the Run IIa data experience.

Additions: fit the entire  $m_{bb}$  distribution, neural network method for background rejection, use QCD

- background from data.
  Discovery of low mass SM Higgs (5 $\sigma$ ) with >8 fb<sup>-1</sup> for a 115 GeV Higgs (caveat: systematics, RunIIb detectors !).
- Evidence ( $3\sigma$  excess) for  $M_{H}$ = 115 GeV with 3 fb<sup>-1</sup>
- : Exclusion of m<sub>H</sub><130 GeV

Assumes RunIIb silicon detectors SUSY/Higgs Workshop No systematics ('98-'99) Higgs Sensitivity Study ('03)

![](_page_33_Figure_7.jpeg)

## **Higgs Sensitivity Study II**

With Luminosities  $3-8~{\rm fb}^{-1}$ , the Run II Tevatron will make very important statements about the nature of the Higgs Boson.

<u>Current TeV performance</u>: b-jet tagging eff. ~ 40-45% (encouraging for a 1<sup>st</sup> of version of our tagging tools!), M<sub>bb</sub>~15% (a lot of room for improvement)

(Sources for improvement: better jet calibration, tracking reconstruction, advanced jet algorithms.)

Past experience (LEP, TeV).....we can do better than expected !

# **b-tagging**

Three different algorithms are being developed at DO. Typically based on:

![](_page_35_Figure_2.jpeg)

' Significance

- Higgs contain b-quark jets
- b-quark jet contains a
  B meson which
  - Has finite life time
  - Travels some distance from the vertex before decaying
     d/σ(d)

![](_page_36_Figure_0.jpeg)

La Thuile, March 4th 2005