

Measurement of |V_{ub}| and |V_{cb}| at BABAR

Rolf Dubitzky University of Heidelberg

Overview

Introduction

- ▷ |V_{cb}| from inclusive measurments
 - Electron energy and hadronic mass moments
 - Combined Fit with Operator Product Expansion
- ≻ V_{ub}
 - Electron energy endpoint
 - E₁ versus q²
 - ⊳ m_x
 - ▷ m_x versus q²
 - moments from unfolded m_x spectrum

Motivation

Challenge for semileptonic decays

- Semileptonic B decays provide the best method to measure [Vcb] and [Vub]
 - relatively easy to calculate on parton level
 - rates depend on CKM matrix elements and quark masses:

$$\Gamma_{u} \equiv \Gamma(b \rightarrow u \, \mathrm{lv}) = \frac{G_{F}^{2}}{192\pi^{2}} \left| V_{ub} \right|^{2} m_{b}^{5}$$

$$\Gamma_{c} \equiv \Gamma(b \rightarrow c \, \mathrm{lv}) = \frac{G_{F}^{2}}{192\pi^{2}} \left| V_{cb} \right|^{2} m_{b}^{2} (m_{b} - m_{c})^{3}$$

R

- **<u>BUT</u>**: sensitive to QCD phenomenology of heavy quarks
 - Higher order QCD (α_s^n) corrections to short distance interaction
 - long distance QCD interaction

u.d

 V_{cb}

u, d

W

Evaluate in theoretical framework of HQE / OPE

Heavy Quark Expansion

- Evalute in theoretical framework of HQE / OPE
 - expand matrix element in powers of 1/m_b in terms of local operators
 - expectation values are properties of the b quark within the B meson
 - \checkmark can calculate perturbative corrections (α_s)
 - \checkmark can factorize long distance corrections (1/m_bⁿ) into measurable quantities

$$\Gamma_{clv} = \frac{G_F m_b^3}{192\pi^3} |V_{cb}|^2 (1 + A_{ew}) A_{pert} A_{nonpert} \cong |V_{cb}|^2 f_{OPE}(m_b, m_c, a_i)$$

 when summing over all final states ("inclusive") problems with properties of the final state cancel out

measure rate and shape of inclusive spectra, e.g. Lepton energy moments are defined:

$$\langle X^{n} \rangle (E_{cut}) = \frac{\int (X - X^{0})^{n} \frac{d\Gamma}{dX} dX}{\int \frac{d\Gamma}{dX} dX} \cong f_{OPE}^{'}(m_{b}, m_{c}, a_{i})$$

Rolf Dubitzky – University of Heidelberg – BABAR – 17th Recontres de Physique de la Vallée d'Aoste

Overview of techniques

Vcb - Electron Energy Moments

- Select events with 2 electrons
 - One electron to "tag" a B event (1.4 < p* < 2.3 GeV in CMS)
 - Measure the energy spectrum of the other ("signal") electron
 - Correct for efficiency, B⁰ mixing, non-prompt electrons, and detector effects (e.g. Bremsstrahlung)
 - ✓ Subtract $B \rightarrow X_{_{u}} I v$ background
- Calculate first four moments for various lower cuts in *E*_{*i*}:

$$E_{cut} = 0.6 \dots 1.5 \text{ GeV}$$

→ Results are input to OPE fit

Rolf Dubitzky – Universit

University of Heidelberg – BABAR

- 17th Recontres de Physique de la Vallée d'Aoste

PRD69:111104

Inclusive Vcb Results

Rolf Dubitzky – University of Heidelberg – BABAR – 17[™] Recontres de Physique de la Vallée d'Aoste

 $b \rightarrow u \mid v$ decays and $\mid V_{\dots} \mid$

Challenging, because:

- $B \rightarrow X_{c} I v$ background 50 times higher
- signal can only by analyzed in limited region of phase space
- need theory to extrapolate to full rate or calculate partial rate

BABAR can present a set of internally consistent analyses, using different approaches to reduce uncertainties and check consistency:

- Lepton endpoint, E inclusive, untagged
- E, vs q² add "neutrino reconstruction"
- m_x
- m_x vs q²
- hadronic moments

- - tag with fully-reconstructed B mesons
- dito, reduce uncertainties in theory
- unfold detector response and calculate M₁, M₂'

Non-perturbative Effects (aka. Shape Function)

- OPE doesn't hold everywhere in the phase space
 - Fermi motion of b quark inside B meson
 - shape functions $f(k_{+})$ (SF) describe non-perturbative effects
 - Problems:
 - need to parameterize SF
 - need to measure parameters
 - sub-leading shape functions
 - parameters can be measured from the moments of the photon energy spectrum in $b \rightarrow s\gamma$ decays

BELLE: (exponential SF)

- Λ^{SF} = 0.66 GeV
- $\lambda_1^{SF} = 0.40 \text{ GeV}^2$

V_{ub} - Lepton endpoint

- Electrons in energy range 2.0 < E₁ < 2.6GeV
- cut on
 - event shapes
 - missing momentum
 - subtract continuum using
 - off-peak data
 - on-peak for $E_1 > 2.8 GeV$
- Fit E₁ spectrum with BBbar backgrounds
 ² 2.1 2.2 2.3 2.4 2 Electron Momentum (from charm (Dev, D*ev, D**ev, D(*)πev, non-resonant, and X₁ev)

partial BF =
$$(4.85 \pm 0.29_{(stat)} \pm 0.53_{(syst)}) \times 10^{-4}$$

$$|Vub| = (4.40 \pm 0.13_{(stat)} \pm 0.25_{(syst)} \pm 0.38_{(theo)}) \times 10^{-3}$$

$$P_{ub} = E_{l} versus q^{2}$$

$$s_{b}^{max} = m_{B}^{2} + q^{2} - 2m_{B}E_{e}\sqrt{\frac{1 \mp \beta}{1 \pm \beta}} - 2m_{B}\left(\frac{q^{2}}{4E_{e}}\right)\sqrt{\frac{1 \pm \beta}{1 \mp \beta}} \text{ with boost } \beta = 0.06$$

$$\int \frac{4}{9} \int \frac{1}{9} \int \frac{1}$$

V_{ub} - m_x spectrum

- Use fully-reconstructed B events
- reconstruct m_x of the recoil system analog to $b \rightarrow c l v$
- Background modelling from simulation
- Fit m_x signal+background to data
- Integrate background subtracted m_x -spectrum up to $m_x = 1.55$ GeV

• Extract |Vub| following the DeFazio-Neubert^[1] approach

$$B(B \to X_u h) = (2.81 \pm 0.32_{\text{stat}} \pm 0.31_{\text{sys}-0.21 \text{ theo}}^{+0.23}) \times 10^{-3}$$

$$|V_{ub}| = (5.22 \pm 0.30_{\text{stat}} \pm 0.31_{\text{syst}} \pm 0.43_{\text{theo}}) \times 10^{-3}$$

[1] DeF. N. JHEP 06, 017 (1999)

Nuble - m_x versus q²
• Ansatz analog to E₁ versus q²
• this aproach has a potentially smaller theoretic uncertainty
• avoids phase space region where SF reigns analysis (m_x)
• but: need to determine partial branching fraction as function of q²
• Extract |Vub| following the aproach of Bauer, Ligeti, Luke (BLL hep-ph/0111387):

$$\Delta BF = (0.90 \pm 0.14_{(stat)} \pm 0.14_{(syst)} \pm 0.02_{(theo)}) \times 10^{-3}$$

$$|Vub| = (4.98 \pm 0.4_{(stat)} \pm 0.39_{(syst)} \pm 0.47_{(theo)}) \times 10^{-3}$$

Rolf Dubitzky – University of Heidelberg – BABAR – 17th Recontres de Physique de la Vallée d'Aoste

V_{ub} - Unfolding the m_x spectrum

In order to turn the measured $\rm m_{\rm X}$ spectrum into an observable which can be

- compared to other experiments, and
- used to extract spectral moments

it is necessary to unfold the detector response.

	M _{max}	value
M ₁	<1.86	1.355 ± 0.084
M ₂ '	<1.86	0.147 ± 0.034
M ₁	<5.0	1.584 ± 0.233
M ₂ '	<5.0	$\textbf{0.270} \pm \textbf{0.099}$

With more statistics:

- → crosscheck OPE fit results
- → check consistency with SF parameterization

Rolf Dubitzky – University of Heidelberg – BABAR –

hep-ex/0408068

80 fb-

Summary

Lepton Endpoint 4.40 ±0.28_(exp)±0.38_(theo)

m_x spectrum 5.22 ±0.42_(exp) ±0.43_(theo)

OPE fit to E_1 and m_x moments:

|Vcb| = $(41.4 \pm 0.4_{exp} \pm 0.4_{HQE} \pm 0.6_{theo}) \times 10^{-3}$

17th Recontres de Physique de la Vallée d'Aoste **Rolf Dubitzky** University of Heidelberg – **BABAR** _

<mark>.18</mark>)

Summary

17th Recontres de Physique de la Vallée d'Aoste **Rolf Dubitzky** University of Heidelberg – BABAR –

Rolf Dubitzky – University of Heidelberg – BABAR – 17th Recontres de Physique de la Vallée d'Aoste

HQE Fit Results (kinetic mass scheme, scale μ =1) hep-ph/0401063 & 0403166

$$\begin{aligned} |V_{cb}| &= (41.4 \pm 0.4_{exp} \pm 0.4_{HQE} \pm 0.6_{th}) \times 10^{-3} \\ B_{clv} &= (10.61 \pm 0.16_{exp} \pm 0.06_{HQE})\% \\ m_b &= (4.61 \pm 0.05_{exp} \pm 0.04_{HQE} \pm 0.02_{\alpha_s}) \text{GeV} \\ m_c &= (1.18 \pm 0.07_{exp} \pm 0.06_{HQE} \pm 0.02_{\alpha_s}) \text{GeV} \\ \mu_{\pi}^2 &= (0.45 \pm 0.04_{exp} \pm 0.04_{HQE} \pm 0.01_{\alpha_s}) \text{GeV}^2 \\ \mu_{G}^2 &= (0.27 \pm 0.06_{exp} \pm 0.03_{HQE} \pm 0.02_{\alpha_s}) \text{GeV}^2 \\ \rho_{D}^3 &= (0.20 \pm 0.02_{exp} \pm 0.02_{HQE} \pm 0.00_{\alpha_s}) \text{GeV}^3 \\ \rho_{LS}^3 &= (-0.09 \pm 0.04_{exp} \pm 0.07_{HQE} \pm 0.01_{\alpha_s}) \text{GeV}^3 \\ \end{cases}$$

Separate fits to hadron and lepton moments give consistent results

- μ_{G^2} and ρ_{LS}^3 are consistent with B-B* mass splitting and HQ sum rules
- Considerable improvement in precision for |V_{cb}| (±2%) and B_{clv} (1.6%) and quark masses (factor of 6), as well as HQE parameters