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NEUTRINO AND COSMOS

IMPRESSIVE SYMBIOSIS

Cosmos-to-neutrinos (only restrictions):

1. Upper bound on nu-mass, possibly
measurement (?).

2. Bounds on right-handed currents,
mass of WR.

3. Mixing with sterile neutrinos.

4. Coupling to new light particles.

5. Magnetic moments.
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Neutrinos-to-Cosmos:

1. Hot Dark Matter (but not cold if
physics is normal).

2. Dark energy (?).

3. UHECP, Z-burst model (?).

4. Bounds for cosmological lepton asym-
metry (for LMA solution).

5. Supernovae explosions.

MAYBE COSMOS WILL PRESENT
US WITH NEW PHYSICAL EFFECTS
RELATED TO NEUTRINOS ?!
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WHY ν ?

The only known particle indicating to new physics:

NON-CONSERVATION OF INDIVID-
UAL LEPTONIC CHARGES
(electronic, muonic, tauonic)

The only known particle for which Majorana
mass is possible:
NON-CONSERVATION OF TOTAL
LEPTONIC CHARGE

New light particles connected with neu-
trinos: (pseudo)goldstone bosons.
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Neutrinos may communicate with HID-
DEN SECTOR where no principles
are respected and this could give rise
to

MORE EXOTIC POSSIBILITIES:

BREAKING OF CPT INVARIANCE

BREAKING OF LORENTZ INVARI-
ANCE

MOST EXOTIC POSSIBILITY

BREAKING OF SPIN-STATISTICS
RELATION

Did Pauli invent a particle which breaks
Pauli exclusion principle?
If so, all above could be broken too.
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Fermi, 1934:
MAYBE ELECTRONS ARE A LIT-
TLE BIT NOT IDENTICAL

PAULI PRINCIPLE VIOLATION FOR
“NORMAL” MATTER, ELECTRONS,
NUCLEONS:

Ignatyev,
Kuzmin,
Okun,
Mohapatra,
Greenberg,
Govorkov

VERY STRONG UPPER BOUNDS.
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OBSERVATIONAL SIGNATURES
OF BOSONIC NEUTRINOS

1. LARGE SCALE STRUCTURE.
COLD (AND HOT) DARK MATTER
MADE OF NEUTRINOS.

2. BIG BANG NUCLEOSYNTHE-
SIS.

3. NEUTRINOS FROM SN.

4. Z-BURST MODEL FOR UHECR.

5. DOUBLE BETA DECAY
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SPECULATIVE AND EXCITING

NONLOCALITY

FASTER-THAN-LIGHT SIGNALS

BROKEN CPT

UNITARITY-???

NON-POSITIVE ENERGY, UNSTA-
BLE VACUUM ???

THEORETICAL PROBLEMS
OR INSPIRATION ?
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SCATTERING MATRIX:

S = 1 +
∑

n

(−i)n

n!

∫

Πd4xj

T {H(x1)...H(xn)}

LORENTZ INVARIANT IF H
ARE BOSONIC OPERATORS,
in this case T-product does not break
Lorentz.

For bosonic ν AMPLITUDES ARE
NOT BOSONIC, even for pure statis-
tics, e.g. for e + p↔ n + ν.

For mixed statistics AMPLITUDES
ARE NOT BOSONIC for any pro-
cesses with neutrinos.

LORENTZ INVARIANCE MAY BE
BROKEN.
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UNITARITY IS MAINTAINED
IF H IS HERMITIAN.

Usually all fermions enter all observ-
able quantities in even number. If
not, observables do not commute and
LOCALITY WOULD BE BROKEN.

ALL THESE EFFECTS APPEAR IN
HIGHER ORDERS ONLY.

Maybe Hamiltonian/Lagrangian approach
is not applicable?
Or least action principle is A LITTLE
violated?
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POSTPONE THEORY
(NON-EXISTING)

CONSIDER PHENOMENOLOGY
of neutrinos obeying Bose or mixed

statistics.

WHAT DO WE BUY
FOR THIS PRICE?

(A. Dolgov, A. Smirnov,
hep-ph/0501066)
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LARGE SCALE STRUCTURE OF
THE UNIVERSE

AND DARK MATTER

Normal neutrinos cannot make cos-
mological cold dark matter for any
spectrum of primordial density per-
turbations and any kind of their in-
teractions.

Tremain-Gunn limit: one cannot put
enough light FERMIONS (respecting
Gershtein-Zeldovich bound) into galax-
ies to make the observed dark matter.

either
NEW PARTICLES, OLD PHYSICS
or
OLD PARTICLES AND VERY NEW
PHYSICS
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BOSONIC NEUTRINOS CAN MAKE
ALL OBSERVED COSMOLOGICAL
DARK MATTER, COLD AND HOT.

They should form Bose condensate.
To this end a large lepton asymme-
try,

|nν − nν̄|

nγ
∼ 100

is necessary. It may be created in a
version of Affleck-Dine model.

Equilibrium distribution for purely
bosonic ν:

fνb =
1

exp[(E − µν)/T − 1
+ Cδ(k)
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If chemical potential µν = mν (maxi-
mum allowed value) and lepton asym-
metry is large then νb should condense,
i.e. C 6= 0, and become COLD.

With mν = 0.1 eV neutrinos would
make CDM if

nν ∼ 104 cm−3

It is TWO ORDERS of magnitude larger
than the conventional number.

In galaxies the neutrino number den-
sity would be about

n
(gal)
ν ∼ 1010cm−3.

Double beta decay seems to exclude
100% bosonic neutrinos (see below)
and the numbers would be a little dif-
ferent.
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MIXED STATISTICS.

Kinetic equation (standard):

F = f1(p1)f2(p2)[1 ± f3(p3)][1 ± f4(p4)]

−f3(p3)f4(p4)[1 ± f1(p1)][1 ± f2(p2)]

HOW MIXED STATISTICS CAN BE
DESCRIBED?

(1 − fν) → c2(1 − fν) + s2(1 + fν)

where c = cos γ and s = sin γ.
Another possibility:

(1 − fν) → c2(1 − c2fν) + s2(1 + c2fν).

In both cases (1 − fν) → (1 − κfν),

κ = c2 − s2

is FERMI-BOSE MIXING PARAM-
ETER.
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EQUILIBRIUM DISTRIBUTION:

f
(eq)
ν = [exp(E/T ) + κ]−1 .

κ runs from +1 (Fermi) to +1 (Bose);
κ = 0 (Boltzmann).

MAXIMUM CHEMICAL
POTENTIAL:

µ(max) = mν − T ln(−κ)

Bose condensation might take place
for negative κ only.
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EFFECTS ON BBN.

L. Cucurull, J.A. Grifols, R. Toldra.
Aspropart.Phys. 4 (1996) 391;
A.Dolgov, S. Hansen, A. Smirnov (in
preparation)

1. Larger energy density of ν, N
(eff)
ν

rises.
2. Larger rate of neutron-proton trans-

formations, N
(eff)
ν drops.

Second effect dominates and

N
(eff)
ν < 3

.
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WITH ZERO OR NEGLIGIBLE CHEM-
ICAL POTENTIAL OF NEUTRINOS.
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VERY GOOD AGREEMENT WITH
THE DATA.

20



ANOTHER POSSIBILITY:
TWO NEUTRINO FIELDS WITH THE
SAME MASS AND SPIN, BUT DIF-
FERENT STATISTICS - FERMIONIC
AND BOSONIC.

Lagrangian always depends upon the
field operator in the combination:

ψν = cψb + sψf

Kinetic equation contains:

c2ff (1 − ff )

and

s2fb(1 − fb)

Equilibrium distributions would be canon-
ical ones. The effect on BBN is simi-
lar to the considered above.
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DOUBLE BETA DECAY.

Define neutrino state as:

|ν〉 = cf̂+|0〉 + sb̂+|0〉 ≡ â+|0〉 = c|f〉 + s|b〉

where c = cos δ and s = sin δ. It would
be desirable if δ = γ introduced above
but cannot be formally proved.

Need to specify the commutators:

f̂ b̂ = eiφb̂f̂ , f̂+b̂+ = eiφb̂+f̂+,

f̂ b̂+ = e−iφb̂+f̂ , f̂+b̂ = e−iφb̂f̂+,

φ is an arbitrary phase.

Two neutrino state:

|k1, k2〉 = â+
1 â

+
2 |0〉
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NORMALIZATION
The n-neutrino state is natural to de-
fine as

|n〉 =
(

cf+ + sb+
)n

|0〉

The normalization is

〈n|n〉 = s2(n−1)
[

n!s2+

(n− 1)!c2
(

sin (nφ/2)

sin (φ/2)

)2
]

The particle number operator:

n̂ = a+a

Diagonal matrix elements:

〈n|n̂|n〉 = s2(n−1)
[

nn!s4 + 2n!c2s2 cos
φ(n− 1)

2

sinnφ/2

sinφ/2
+

c2
(

n!s2 + (n− 1)!(c2 − s2)
)

(

sin (nφ/2)

sin (φ/2)

)2
]
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Amplitude of double-beta decay:

A2β = 〈k1, k2, 2e,A
′
∣

∣

∣

∫

d4x1d
4x2ψν(x1)

ψ2(x2)M(x1, x2)
∣

∣

∣
0, A〉,

After simple commutations:

A2β = A−
[

c4 + c2s2 (1 − cosφ)
]

+A+
[

c4 + c2s2 (1 + cosφ)
]

.

A2β = cos2 χA− + sin2 χA+.

for any φ.

Integrated over neutrinos:

Wtot = cos4 χW− + sin4 χW+
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The 0+ → 0+ amplitude for normal
neutrinos is proportional to bilinear
combinations of

Kn ≡ [En − Ei + Ee1 + Eν1]
−1

+[En− Ei + Ee2 + Eν2]
−1,

and

Ln ≡ [En − Ei + Ee2 + Eν1]
−1

+[En − Ei + Ee1 + Eν2]
−1.

For bosonic neutrinos the sum in each
term above changes to difference.
PROBABILITY OF THE PROCESS
WITH BOSONIC NEUTRINOS IS
STRONGLY SUPPRESSED: BY 1/250
FOR 56Ge and by 1/10 for 100Mo.

For 0+ → 2+ the situation is opposite.
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Analysis of total rates, known theo-
retically with factor 2 accuracy and
spectra known with very high preci-
sion, about 10%
A.Barabash, A.Dolgov, P.Domin,
F.Simkovic, A.Smirnov - preliminary

s2 < 0.8
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CONCLUSION

1. INTERESTING! BUT PLENTY

OF THEORETICAL PROBLEMS. A
WAY TO BREAK MANY OF SYM-
METRIES DISCUSSED TODAY.

2. POSSIBILITY TO MAKE DM OUT
OF NEUTRINOS

3. GOOD FOR BBN

4. SOME HINTS TO THE EFFECT
IN 2β

5. IF IT WAS CHECKED FOR ELEC-
TRONS AND NUCLEONS, WHY NOT
FOR NEUTRINOS.
ODDS ARE HIGHER.
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