The High-Intensity Frontier

Franco Cervelli – INFN Pisa

La Thuile, March 2, 2004

NEW ISSUES CAN BE INVESTIGATED IN SEVERAL WAYS:

1) At very high energies (LHC and beyond) searches can be made for the production of heavy particles (predicted or unpredicted) and for new phenomena (possibly totally unexpected).

2) At lower energies, searches can be made for very rare processes or for small deviations from expected results (for example, due to small effects caused by unseen heavy particles).

Historically, many fundamental discoveries and measurements have come from accelerators which were not the highest energy machine available at the time:

- weak neutral currents at the CERN PS
- J/ψ at the AGS (Brookhaven)
- limits on the lepton-number conservation
- most of the parameters of CP violation
- etc.

Leading the quest for new physics

- direct searches:
 - LHC, ILC, CLIC
- indirect evidence:
 - Leptons: neutrino masses and mixings, LFV
 - Quarks: K, B hadron decays
 - **CPT** violation searches , **Axion** searches

Exploring dynamical issues

- ancillary to the exploration of the fronteer, e.g.:
 - better PDF's for LHC studies

with no obvious or direct impact on the HE frontier:

- hadron spectroscopy
- polarised/transverse/generalized/... PDFs
- ...

Beyond the Standard Model: the clue from Hadron studies ...

- Precision study of hadrons deviations in expected behaviour of light and c quarks evidence for new physics + will elucidate new physics if found elsewhere
 - Rare decays
 - Mixing & CPV

Study of QCD Systems

Search for foreseen states, look for exotics (not yet established !!):

The Renaissance of Hadron Spectroscopy

Quarkonium

- η'_{c} (Belle, BaBar, CLEO)
- X(3872) (Belle, CDF, D0, BaBar)
- **#** Narrow Charmed States
 - D_{sJ} (BaBar, CLEO, Belle)
 - $D_{sJ}(2632) \rightarrow \eta D_s^+$ (Selex ?)
 - Ξ_{cc} (Selex ?)
- Pentaquark candidates
 - Θ⁺(1540)
 - Ξ⁻⁻(1862)
 - $\Theta_c^+(3100)$

 $\label{eq:main_state} \begin{array}{l} \mbox{M = 3872.0 \pm 0.6 \pm 0.5 \ MeV} \\ \Gamma \mbox{< 2.3 \ MeV} \ \mbox{(90 \% C.L.)} \end{array}$

Statistics is relevant!

Although statistics might be a not sufficient condition, it is certainly necessary!

- **PS** $10^{13} \text{ p/sec} @ 26 \text{ GeV/c}$
- **SIS100/300** 10¹³ p/sec @29GeV/c
- **NEW PS** $6x10^{14}$ p/sec @ 30 GeV/c

Hadron Physics Summary

- # Strong interaction effects have important
 (crucial) impact on many different
 measurements and New Physics searches
- Many short/medium term projects already planned
 - GSI-JLab-CLEO-c, LHC-b
- **#**Where will we be in 10 years from now?
- A vast program in the field of hadronic physics will be possible with a diverse and flexible accelerator complex.

Future Muon Dipole Moment Measurements

at a high intensity muon source

SUSY connection between D_{μ} , $\mu \rightarrow e$ (*LFV*)

a_{μ} is sensitive to <u>all</u> virtual particles which couple to the muon, e.g. SUSY

a toy model with equal susy masses gives:

 $a_\mu({
m SUSY})\sim~1.3$ ppm $aneta~(rac{100~{
m GeV}}{ ilde{m}})^2$

If SUSY is discovered at LHC, then (g-2) will give a 20% determination of tan β

Required µ Fluxes

Experiment	N_{μ}	$p_{\mu}(\text{MeV})$	$\Delta p_{\mu}/p_{\mu}(\%)$	sensitivity	$I_{off}/I_{on}, \delta T, \Delta T$
$\mu^+ \rightarrow e^+e^-e^+$	10 ¹⁷	< 30	< 10	BR=10 ⁻¹⁵	DC beam
$\mu^+ \rightarrow e^+ \gamma$	10^{17}	< 30	< 10	BR=10 ⁻¹⁵	DC beam
$\mu^ e^-$ pulsed	10^{21}	< 80	< 5	BR=10 ⁻¹⁹	$10^{-10}, < 100 { m ns}, > 1 \mu { m s}$
$\mu^ e^- \text{ continuos}$	10^{20}	< 80	< 5	BR=10 ⁻¹⁹	DC beam
μEDM	$10^{16}/P^2$	300 — 500	< 5	$10^{-24} e cm$	pulsed beam
g - 2	10 ¹⁶	3100	< 2	$< 0.1 \mathrm{ppm}$	pulsed beam

momentum range (GeV/ _C)	length (m)	flux per sec	beam purity
0.4 to 0.8	17.5	K^{+} 10 ⁶ K^{-} 5.10 ⁵	^π / _K ≥1
0.4 to 0.8	14.5	к ⁺ 5.10 ⁶ к ⁻ 2.5х10 ⁶	^π / _K ≥1
0.7 to 1.5	26.5	к ⁺ 6·10 ⁶ к ⁻ 3·10 ⁶	^π / _K ~2
1.2 to 2.5	32	к ⁺ 10 ⁷ к ⁻ 5·10 ⁶	‴∕ _K ~1
4 to 13	750	μ ⁺ 5.10 ⁸	^π / _u 10 ⁻⁶
1 to 6	750	$ \overline{p} 2 \cdot 10^6 $ $ \overline{p} 3 \cdot 10^8 $ $ \overline{p} 2 \cdot 10^8 $	10 ⁻³ π / 3 20
2.5 to 7.5	90	к ⁺ 8.10 ⁷ к ⁻ 3.10 ⁷	^π / _K ~3(4)
κ _c (0°)	50	κ _L ⁰ 10 ⁷	(3.5m Cabe) ^{K°} L/n~1
	1		

PHYTHIA: E = 30 GeV, I = 80 μ A

Summary on muons

- Both g-2 and µEDM are sensitive to new physics behind the corner
- Unique opportunity of studying phases of mixing matrix for SUSY particles
- Historically, limits on d_E have been strong tests for new physics models
- > μ EDM would be the first tight limit on d_E from a second generation particle
- The experiments are hard but, in particular the µEDM, not impossible
- A large muon polarized flux of energy 3GeV (g-2) or 0.5GeV (µEDM) is required

Why study Rare Kaon Decays

- Search for explicit violation of Standard Model
 Lepton Flavour Violation
- Probe the flavour sector of the Standard Model -FCNC
- Test fundamental symmetries - CP,CPT
- Study the strong interactions at low energy

 Chiral Perturbation Theory, kaon structure

Guiding rationale

In the SM:

In Supersymmetry:

 $K_L \rightarrow \pi^0 \nu \nu$

Background Level (1mmPb/5mmScint)

From KAMI proposal

New projects starting/proposed

		Tp/s	MK/s
K _L KOPIO (BNL):	2010+ on track	14	33
K _L (J-PARC):	2008++ (beam line? accidentals?)	60	320
K _L KLOD (Protvino):	2007+	1.1	9
K ⁺ (CERN):	After R&D, 2009+ (tracking?)	0.2	9
K ⁺ CKM-2 (FNAL):	Re-design, 2009+ (tracking?, veto?)	2	3(?)
K ⁺ (J-PARC):	2008+ (improvements?)	23	2.3
K ⁺ OKA (Protvino)	$2005+(K{\rightarrow}3\pi)$	1.1	0.6

Conclusion for K's

Absolutely clear physics case, to be pursued with the strongest determination in a global context of healthy, aggressive and very competent competition

The discovery of Supersymmetry at the LHC will dramatically increase the motivation for searches of new phenomena in flavour physics.

The K physics programme will find a natural complement in the B physics studies at the LHC, and in new Lepton Flavour Violation searches.

The definition of a potential LFV programme and the study of its implications for the accelerator complex should be strongly encouraged and supported

ν

Neutrino oscillations are the most important discovery in HEP in the last 15 years

Most of the parameters are waiting to be measured

Straightforward theoretical interpretation: entries of a 3x3 matrix

Clear criteria driving the experimental design/optimization:

Rather general consensus on the pros and cons of different configurations:

Perhaps too much consensus? $K \rightarrow SK \rightarrow YK \rightarrow ?K$ Need to explore new detector concepts? capabilities?

Timescale

	At least 4 phases of Long Baseline experiments	
2001	1) 2001-2010. K2K, Opera, Icarus, Minos. Optimized to confirm the SuperK evidence of oscillation of atmospheric neutrinos through ν_{μ} disappearance or ν_{τ} appearance. They will have limited potential in measuring oscillation parameters. Not optimized for ν_{e} appearance (θ_{13} discovery).	<u>10⁻¹</u>
2015	2) 2009-2015. T2K (approved), No ν a, Double Chooz. Optimized to measure θ_{13} (Chooz \times 20) through ν_e appearance or ν_e disappearance. Precision measure of the atmospheric parameters (1 % level). Tiny discovery potential for CP phase δ , even combining their results.	10 ⁻³
2020 vear	3) 2015 - 2025. SuperBeams and/or Beta Beams. Improved sensitivity on θ_{13} (Chooz \times 200). They will have discovery potential for leptonic CP violation and mass hierarchy for $\theta_{13} \geq 1^{\circ}$. In any case needed to remove any degeneracy from Nufact results (see P. Hernandez et al., hep-ph/0207080)	<mark>10⁻⁵</mark> sin ² (2թ ₁₂)
Jour	4) Ultimate facility: Neutrino Factories or high energy Beta Beams. Ultimate sensitivity on the CP phase δ , θ_{13} , mass hierarchy.	, 13'

2

v beams parameters

Main parameters for present and future long base-line neutrino oscillation experiments at accelerators with conventional ν_{μ} beams.

Neutrino facility	Proton momentum (GeV/c)	L (km)	$E_{\nu}(GeV)$	p.o.t./year (10^{19})
KEK PS	12	250	1.5	2
FNÁL NUMI	120	735	3	36
CERN CNGS	400	732	17.4	4.5
CERN SPL	2.2	130	0.27	10000
JHF-OA	50	295	0.76	100
NUMI-OA	120	820	2.0	40

Current and planned facilities

	Ep (GeV	Power (MW)	Bea m	$\langle E_{n} $ (GeV)	L (km)	M _{det} (kt)	n _m CC (/yr)	n _e @pea k
K2K	12	0.005	WB	1.3	250	22.5	~50	~1%
MINOS(LE)	120	0.4	WB	3.5	730	5.4	~2,500	1.2%
CNGS	400	0.3	WB	18	732	~2	~5,000	0.8%
T2K-I	50	0.75	OA	0.7	295	22.5	~3,000	0.2%
NOnA	120	0.4	OA	~2	810?	50	~4,600	0.3%
C2GT	400	0.3	OA	0.8	~120	1,000	~5,000	0.2%
T2K-II	50	4	OA	0.7	295	~500	~360,000	0.2%
NOnA+PD	120	2	OA	~2	810?	50?	~23,000	0.3%
BNL-Hs	28	1	WB/OA	~1	2540	~500	~13,000	
SPL-Frejus	2.2	4	WB	0.32	130	~500	~18,000	0.4%
FeHo	8/120	"4"	WB/OA	1~3	1290	~500	~50,000	

From: Takashi Kobayashi, Paris 2004

High Intensity Machines

Long term: preliminary comparison

		INTERES	ST FOR	
	LHC upgrade	Neutrino physics beyond CNGS	Radioactive ion beams (EURISOL)	Others **
SPL * (>2 GeV – 50 Hz)	Valuable	Very interesting for super-beam + beta-beam	Ideal	Spare flux ⇒ possibility to serve more users
RCS (30 GeV – 8 Hz)	Valuable	Very interesting for neutrino factory	No	Valuable
New PS (30 GeV)	Valuable	No	No	Valuable
New LHC injector (1 TeV)	Very interesting for doubling the LHC energy	No	No	Potential interest for kaon physics

* Comparison should also be made with an RCS of similar characteristics.

** Input expected from the present workshop !

MARGINALIA

- Sociology of particle physics should not be neglected.
- Higher Energy machines will host fewer experiments:
 - personal satisfaction of physicists
 - difficulties in incorporating new and innovative ideas
- difficulties for proper training of graduate students
 A HIPS will host a large number of experiments, each with a "moderate" number of experimenters. Some risky innovative experiments will be possible. Graduate students will be able to grasp all aspects of an experiment.

QCD and strong interactions

Strong interaction studies will play a crucial role: QCD is ubiquitous in high energy physics!

Once new particles are discovered at LHC, it will be mandatory to explore parameters, mixing patterns, i.e., we need an unprecedented ability to interpret the strong interaction structure of final states

Synergy: Kaon system, Heavy Flavour, Hadron spectroscopy

■ Many intellectual puzzles still open in QCD!

 Confinement, chiral symmetry breaking, vacumm structure (glueballs etc) light particle classifications, multi-quark states...

Rare and forbidden decays

Motivation: lepton number violation study investigation of long range effects and SM extension

$$D^+, D_s^+ \to h^{\pm} \mu^{\mp} \mu^+$$
$$(h = \pi, K)$$

Approaching theoretical predictions for some of the modes but still far for the majority

Present EDM Limits

Particle	Present EDM limit	SM value
	(e-cm)	(e-cm)
	6.3×10^{-26}	10-31
e	$\sim 1.6 \times 10^{-27}$	10-38
<i>µ</i>	$< 10^{-18}$ (CERN) $\sim 10^{-19}$ * (E821)	10 ⁻³⁵
future μ exp	10 ⁻²⁴ to 10 ⁻²⁵	

*projected

Unlike the EDM, a_{μ} is well measured. $a_{\mu^{-}} = 11659214(8)(3) \times 10^{-10} (\pm 0.7 \text{ ppm})$

$a_{\mu^+}(\exp) = 11659203(8) \times 10^{-10} (\pm 0.7 \text{ppm})$

Comparing with e^+e^- - data shows a discrepancy with the standard model of 2.4 σ

the combined value is

 $a_{\mu}(\exp) = 11\,659\,208(6) imes 10^{-10} \ (\pm 0.5\,ppm)$

$$\begin{array}{ccc} \mathsf{K}^{+} \to \pi^{+} \mathsf{v} \, \mathsf{v} & \mathsf{K}^{0}{}_{\mathsf{L}} \to \pi^{0} \, \mathsf{v} \, \mathsf{v} \\ \\ \mathsf{K}^{0}{}_{\mathsf{L}} \to \pi^{0} \, \mathrm{e}^{+} \, \mathrm{e}^{-} & \mathsf{K}^{0}{}_{\mathsf{L}} \to \pi^{0} \, \mu^{+} \, \mu^{-} \end{array}$$

A measurement of the 4 decay modes is a crucial element in the exploration of the new physics discovered at the LHC.

Accuracies at the level of 10% would already provide precious quantitative information

 $K^0_{,} \rightarrow \pi^0 e^+ e^- \text{ and } K^0_{,} \rightarrow \pi^0 \mu^+ \mu^-$

Study Direct CP-Violation

Direct CPV

Indirect CP-Violating Contribution has been measured (NA48/1, see next slide)
Constructive Interference (theory)
CP-Conserving Contributions are negligible

$K_L^0 \rightarrow \pi^0 ee (\mu\mu)$: Sensitivity to New Physics

Isidori, Unterdorfer, Smith:

* A. J. Buras, R. Fleischer, S. Recksiegel, F. Schwab, hep-ph/0402112

 $K^0_I \to \pi^0 \nu \nu$

Purely theoretical error ~2%: SM 3 10⁻¹¹
Purely CP-Violating (Littenberg, 1989)
Totally dominated from t-quark
Computed to NLO in QCD (Buchalla, Buras, 1999)
No long distance contribution SM~3 × 10⁻¹¹

• Experimentally: 2/3 invisible final state !!

• Best limit from KTeV using $\pi^0 \rightarrow ee\gamma decay$

 $BR(K^0 \rightarrow \pi^0 vv) < 5.9 \times 10^{-7} 90\% CL$

Still far from the model independent limit: $BR(K^0 \rightarrow \pi^0 \nu \nu) < 4.4 \times BR(K^+ \rightarrow \pi^+ \nu \nu) \sim 1.4 \times 10^{-9}$ Grossman & Nir, PL B407 (1997)

Sub leading $u_{\mu} - u_{e}$ oscillations

$$\begin{split} \nu_{\mu} &\to \nu_{e} \) \text{ developed at the first order of matter effects} \\ &(\nu_{\mu} \to \nu_{e}) = 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\frac{\Delta m_{13}^{2}L}{4E} \qquad \theta_{13} \text{ driven} \\ &+ 8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}cos\delta - s_{12}s_{13}s_{23})\cos\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ CPeven} \\ &- 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\sin\frac{\Delta m_{12}^{2}L}{4E} \quad \text{CPodd} \\ &+ 4s_{12}^{2}c_{13}^{2}\{c_{13}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}cos\delta\}\sin\frac{\Delta m_{12}^{2}L}{4E} \quad \text{solar driven} \\ &- 8c_{12}^{2}s_{13}^{2}s_{23}^{2}\cos\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\frac{aL}{4E}(1 - 2s_{13}^{2}) \quad \text{matter effect (CP odd)} \\ &\text{ere } a = \pm 2\sqrt{2}G_{F}n_{e}E_{\nu} = 7.6\cdot 10^{-5}\rho[g/cm^{3}]E_{\nu}[GeV] \quad [eV^{2}] \end{split}$$

Sensitivity to θ_{13}

The	expec	ted	90%	C.L.	sensitiv	rity	on	θ_{13}	m	ea-
sure	ments	for	$_{\mathrm{the}}$	long-l	paseline	ext	×ri	ment	\mathbf{s}	for
Δm_f^2	$_{2}\sim 2$	$5 \cdot 1$	0-з	$eV (\delta$	= 0).					

Experiment	fid mass (Kt)	θ_{13}
MINOS	5.0	7.1°
ICARUS + OPERA	2.4 + 1.8	5^{0}
ICARUS - L.E. $\times 1.5$	2.4	3.5°
β -Beam	440	0.8^{0}
CERN SPL	440	1.2^{0}
T2K	22.5	2.3°
$NO\nu A$	50	1.8^{0}
Neutrino Factory	40	$< 0.1^{0}$

Machines comparison

		T2K	J Park 2	PS++	SPL	βB
ponte p-drivite	(MW)	0.75	-4	4	-4	0.4
p-begin energy	(GeV)	50	50	20	2.2	1.2.2
$E_{\nu_{\mu}}$	(GeV)	0.7	0.7	1.6	0.27	0.3
L	(Km)	295	295	732	1.30	130
Off-Axis		2^{0}	2^{0}	-	-	-
νµCC/Kt/year		100	500	450	45	38
$\nu_{e}CC/\nu_{\mu}CC$	%	0.4	0.4	1.2 - no opt.	0.7	0

