La Thuile, 28 February '05

Models of Neutrino Masses \& Mixings

G. Altarelli CERN/Roma Tre

Some recent work by our group G.A., F. Feruglio, I. Masina, hep-ph/0210342 (Addendum: v2 in Nov. '03), hep-ph/0402155. Reviews:
G.A., F. Feruglio, New J.Phys.6:106,2004 [hepph/0405048]; G.A., hep-ph/0410101; F. Feruglio, hep-ph/0410131

The current experimental situation is still unclear
-LSND: true or false?
-what is the absolute scale of v masses?
-••
Different classes of models are still possible:
If LSND true sterile $v(\mathrm{~s})$?? CPT violat'n??
If LSND false

- Degenerate $\left(\mathrm{m}^{2} \gg \Delta \mathrm{~m}^{2}\right) \Longrightarrow \mathrm{m}^{2}<\mathrm{o}(1) \mathrm{eV}^{2}$
- Inverse hierarchy

- Normal hierarchy
G. Altarelli

Neutrino oscillation parameters

Maltoni et al ‘04

parameter	best fit	2σ	3σ	5σ
$\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$	6.9	$6.0-8.4$	$5.4-9.5$	$2.1-28$
$\Delta m_{31}^{2}\left[10^{-3} \mathrm{eV}^{2}\right]$	2.6	$1.8-3.3$	$1.4-3.7$	$0.77-4.8$
$\sin ^{2} \theta_{12}$	0.30	$0.25-0.36$	$0.23-0.39$	$0.17-0.48$
$\sin ^{2} \theta_{23}$	0.52	$0.36-0.67$	$0.31-0.72$	$0.22-0.81$
$\sin ^{2} \theta_{13}$	0.006	≤ 0.035	≤ 0.054	≤ 0.11

G. Altarelli

3-v Models

$$
\left(\begin{array}{l}
v_{\mathrm{e}} \\
v_{\mu} \\
v_{\tau}
\end{array}\right)=U \quad\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

flavour

$$
\mathrm{U}=\mathrm{U}_{\mathrm{P}-\mathrm{MNS}}
$$

Pontecorvo
Maki, Nakagawa, Sakata

In basis where $\mathrm{e}^{-}, \mu^{-}, \tau^{-}$are diagonal: δ : CP violation $U=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right]\left[\begin{array}{ccc}c_{13} & 0 & s_{13} e^{-i \delta} \\ 0 & 1 & 0 \\ -s_{13} \mathrm{e}^{\mathrm{i} \delta} & 0 & c_{13}\end{array}\right]\left[\begin{array}{ccc}c_{13} & s_{12} & 0 \\ -s_{12} & c_{22} & 0 \\ 0 & 0 & 1\end{array}\right] \sim$
$\mathrm{s}=$ solar: large
$\sim\left[\begin{array}{cc}\mathrm{C}_{13} \mathrm{C}_{12} & \mathrm{C}_{13} \mathrm{~s}_{12} \\ \cdots & \cdots\end{array}\right.$

$$
G U=\left[\begin{array}{ccc}
c & -s & 0 \\
\frac{s}{\sqrt{2}} & \frac{c}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{s}{\sqrt{2}} & \frac{c}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

(some signs are conventional)

$$
\mathrm{m}_{v} \sim \mathrm{U}^{*}\left[\begin{array}{ccc}
\mathrm{e}^{\mathrm{i} \phi_{1}} \mathrm{~m}_{1} & 0 & 0 \\
0 & \mathrm{e}^{\mathrm{i} \phi_{2}} \mathrm{~m}_{2} & 0 \\
0 & 0 & \mathrm{~m}_{3}
\end{array}\right] \mathrm{U}^{+} \begin{aligned}
& \text { In general } 9 \text { parameters: } \\
& 3 \text { masses, } 3 \text { angles, } \\
& 3 \text { phases }
\end{aligned}
$$

$\mathrm{L}^{\top} \mathrm{m}_{\mathrm{v}} \mathrm{L} \quad$ For $\mathrm{s}_{13} \sim 0$:

$$
\left[\begin{array}{ccc}
m_{1} c^{2}+m_{2} s^{2} \\
\ldots & \left(m_{1}-m_{2}\right) c s / \sqrt{2} /\left(m_{1}-m_{2}\right) c s / \sqrt{2} \\
\ldots & \left(m_{1} s^{2}+m_{2} c^{2}+m_{3}\right) / 2 \\
\ldots & \left(m_{1} s^{2}+m_{2} c^{2}-m_{3}\right) / 2 \\
\left(m_{1} s^{2}+m_{2} c^{2}+m_{3}\right) / 2
\end{array}\right]
$$

Note: $\quad \cdot \mathrm{m}_{v}$ is symmetric -phases included in m_{i}

Relation between masses and frequencies:

$$
\begin{aligned}
& \mathrm{P}\left(v_{\mathrm{e}}<->v_{\mu}\right)=\mathrm{P}\left(v_{\mathrm{e}}<->v_{\tau}\right)=1 / 2 \sin ^{2} 2 \theta_{12} \cdot \sin ^{2} \Delta_{\text {sun }} \\
& \mathrm{P}\left(v_{\mu}<->v_{\tau}\right)=\sin ^{2} \Delta_{\mathrm{atm}}{ }^{-1 / 4} \sin ^{2} 2 \theta_{12} \cdot \sin ^{2} \Delta_{\text {sun }}
\end{aligned}
$$

$$
\Delta_{s u n}=\frac{m_{2}^{2}-m_{1}^{2}}{4 E} L \quad ; \quad \Delta_{a t m}=\frac{m_{3}^{2}-m_{1,2}^{2}}{4 E} L
$$

G. Altarelli

In our def.: $\Delta_{\text {sun }}>0, \Delta_{\text {atm }}>$ or <0

v oscillations measure Δm^{2}. What is m^{2} ?

$$
\begin{aligned}
& \Delta \mathrm{m}_{\mathrm{atm}}{ }^{\sim} \sim 2.510^{-3} \mathrm{eV}{ }^{2} ; \quad \Delta \mathrm{m}^{2}{ }_{\text {sun }} \sim 810^{-5} \mathrm{eV}^{2} \\
& \text { - Direct limits } \\
& m_{\text {"ve" }}<2.2 \mathrm{eV} \\
& \mathrm{~m}_{\text {"vu" }}<170 \mathrm{KeV} \\
& m_{" v \tau}<18.2 \mathrm{MeV} \\
& \text { - } 0 v \beta \beta \quad \mathrm{~m}_{\mathrm{ee}}<0.2-0.5-\text { ? eV (nucl. matrix elmnts) } \\
& \text { Evidence of signal? Klapdor-Kleingrothaus } \\
& \text { - Cosmology } \quad \Omega_{v} \mathrm{~h}^{2} \sim \sum_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}} / 94 \mathrm{eV} \quad\left(\mathrm{~h}^{2} \sim 1 / 2\right) \\
& \sum_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}}<0.7-1.8-\text { ? eV (dep. on priors) } \\
& \text { Any } v \text { mass }<0.23-0.6-? ~ e V
\end{aligned}
$$

Why v 's so much lighter than quarks and leptons?
Because v 's are Majorana particles: $\mathrm{m}_{v} \sim \mathrm{~m}^{2} / \mathrm{M}$

Lahav

Neutrino mass from Cosmology

Data	Authors	$\mathrm{M}_{\mathrm{v}}=\sum \mathrm{m}_{\mathrm{i}} \quad 95 \% \mathrm{cl}$
2 dFGRS	Elgaroy et al. 02	$<1.8 \mathrm{eV}$
WMAP+2dF+...	Spergel et al. 03	$<0.7 \mathrm{eV}$
WMAP+2dF	Hannestad 03	$<1.0 \mathrm{eV}$
SDSS+WMAP	Tegmark et al. 04	$<1.7 \mathrm{eV}$
WMAP+2dF+ SDSS	Crotty et al. 04	$<1.0 \mathrm{eV}$

By itself CMB (WMAP, ACBAR) do not fix M_{v}
G. Altarelli

Only in combination with galaxy power spectrum (2dFGRS, SDSS) become sensitive.

After KamLAND, SNO and WMAP not too much hierarchy is needed for v masses:

$$
\mathrm{r} \sim \Delta \mathrm{~m}^{2}{ }_{\text {sol }} / \Delta \mathrm{m}^{2}{ }_{\mathrm{atm}} \sim 1 / 35
$$

Precisely at 3б: $0.018<\mathrm{r}<0.053$
or

$$
\begin{aligned}
& m_{\text {heaviest }}<1-0.6 \mathrm{eV} \\
& \mathrm{~m}_{\text {next }}>\sim 8 \quad 10^{-3} \mathrm{eV}
\end{aligned}
$$

For a hierarchical spectrum: $\quad \frac{m_{2}}{m_{3}} \approx \sqrt{r} \approx 0.2$
Comparable to: $\quad \lambda_{C} \approx 0.22$ or $\sqrt{\frac{m_{\mu}}{m_{\tau}}} \approx 0.24$
Suggests the same "hierarchy" parameters for q, I, v G. Altarelli

e.g. θ_{13} not too small!

$0 \nu \beta \beta$ can tell degenerate, inverted or normal hierarchy

$$
\left|\mathrm{m}_{\mathrm{ee}}\right|=\mathrm{c}_{13}{ }^{2}\left[\mathrm{~m}_{1} \mathrm{c}_{12}{ }^{2}+\mathrm{e}^{\mathrm{i} \alpha} \mathrm{~m}_{2} \mathrm{~s}_{12}{ }^{2}\right]+\mathrm{m}_{3} \mathrm{e}^{\mathrm{i} \beta} \mathrm{~s}_{13}{ }^{2}
$$

LA:~0.3-1

Degenerate: $\sim|\mathrm{m}|\left|\mathrm{c}_{12}{ }^{2}+\mathrm{e}^{\mathrm{i} \alpha \mathrm{s}_{12}}{ }^{2}\right|$

$$
\begin{gathered}
\left|\mathrm{m}_{\mathrm{ee}}\right| \sim|\mathrm{m}|(0.3-1)<0.23-1 \mathrm{eV} \\
\mathrm{IH}: \sim\left(\Delta \mathrm{m}^{2}{ }_{\mathrm{atm}}\right)^{1 / 2}\left|\mathrm{c}_{12}{ }^{2}+\mathrm{e}^{\mathrm{i} \alpha \mathrm{~s}_{12}}{ }^{2}\right| \\
\quad\left|\mathrm{m}_{\mathrm{ee}}\right| \sim(1.6-5) 10^{-2} \mathrm{eV}
\end{gathered}
$$

$\mathrm{NH}: \sim\left(\Delta \mathrm{m}_{\mathrm{sol}}\right)^{1 / 2} \mathrm{~s}_{12}{ }^{2}+\left(\Delta \mathrm{m}^{2}{ }_{\mathrm{atm}}\right)^{1 / 2} \mathrm{e}^{\mathrm{i} \beta} \mathrm{s}_{13}{ }^{2}$ $\left|\mathrm{m}_{\text {ee }}\right| \sim(f e w) 10^{-3} \mathrm{eV}$

Full dependence on $\min m_{\nu}$

Present exp. limit: $\mathrm{m}_{\mathrm{ee}}<0.3-0.5 \mathrm{eV}$

G. Altarelli

- Still large space for non maximal 23 mixing

$$
3-\sigma \text { interval } 0.31<\sin ^{2} \theta_{23}<0.72
$$

Maximal θ_{23} theoretically hard

- θ_{13} not necessarily too small probably accessible to exp.
$\sin \theta_{13} \sim 1 / 2 \sin \theta_{12}$ not excluded!

Very small θ_{13} theoretically hard
Normal models: θ_{23} large but not maximal, θ_{13} not too small (θ_{13} of order λ_{c} or $\lambda_{c}{ }^{2}$)
Exceptional models: θ_{23} maximal and/or θ_{13} very small or also: all mixing from the charged lepton sector....
G. Altarelli

$$
\mathrm{U}=\mathrm{U}_{\mathrm{e}}+\mathrm{U}_{\mathrm{v}}
$$

Degenerate v 's

$m^{2} \gg \Delta m^{2}$

- Apriori compatible with hot dark matter (m~1-2 eV)
\rightarrow was considered by many
- Limits on m_{ee} from $0 v \beta \beta$ then imply large mixing also for solar oscillations: (Vissani; Georgi,Glashow)

$$
\begin{aligned}
& \stackrel{\mathrm{m}_{\mathrm{ee}}<0.3-0.5 \mathrm{eV} \text { (Exp) }}{\mathrm{m}_{\mathrm{ee}}=\mathrm{c}^{2}{ }_{13}\left(\mathrm{~m}_{1} \mathrm{c}^{2}{ }_{12}+\mathrm{m}_{2} \mathrm{~s}^{2}{ }_{12}\right)+\mathrm{s}^{2}{ }_{13} \mathrm{~m}_{3} \sim \mathrm{~m}_{1} \mathrm{c}^{2}{ }_{12}+\mathrm{m}_{2} \mathrm{~s}^{2}{ }_{12}}
\end{aligned}
$$

If $\left|\mathrm{m}_{1}\right| \sim\left|\mathrm{m}_{2}\right| \sim\left|\mathrm{m}_{2}\right| \sim 1-2 \mathrm{eV} \longrightarrow \mathrm{m}_{1}=-\mathrm{m}_{2}$ and $\mathrm{c}^{2}{ }_{12} \sim \mathrm{~s}^{2}{ }_{12}$

$$
\text { LA solution: } \sin ^{2} \theta \sim 0.3 \longrightarrow \cos ^{2} \theta-\sin ^{2} \theta \sim 0.4
$$ a moderate suppression factor!

Trusting WMAP\&2dF: |m|<0.23 eV, only a moderate degeneracy is allowed: for LA, $\mathrm{m} /\left(\Delta \mathrm{m}^{2}{ }_{\mathrm{atm}}\right)^{1 / 2}<5, \mathrm{~m} /\left(\Delta \mathrm{m}^{2}{ }_{\text {sol }}\right)^{1 / 2}<30$.
Less constraints from $0 v \beta \beta$ (both $\mathrm{m}_{1}= \pm \mathrm{m}_{2}$ allowed)

Anarchy (or accidental hierarchy):

No structure in the leptonic sector
See-Saw:
$m_{v} \sim m^{2} / M$
produces hierarchy from random m,M
could fit the data

But: all mixing angles should be large
marginal: predicts
θ_{13} near bound
G. Altarelli

Semianarchy: no structure in 23

Consider a matrix like $\quad \mathrm{m}_{v} \sim\left(\begin{array}{ccc}\lambda^{2} & \lambda & \lambda \\ \lambda & 1 & 1 \\ \lambda & 1 & 1\end{array}\right) \quad$ Note: $\begin{aligned} & \theta_{13} \sim \lambda \\ & \theta_{23} \sim 1\end{aligned}$
with coeff.s of o(1) and $\operatorname{det} 23 \sim 0(1)$
[$\lambda \sim 1$ corresponds to anarchy]
After 23 and 13 rotations $\quad m_{v} \sim\left[\begin{array}{ccc}\lambda^{2} & \lambda & 0 \\ \lambda & \eta & 0 \\ 0 & 0 & 1\end{array}\right)$
Normally two masses are of o(1) and $\theta_{12} \sim \lambda$
But if, accidentally, $\eta \sim \lambda$, then the solar angle is also large.
The advantage over anarchy is that θ_{13} is small, but the hierarchy $\mathrm{m}_{3}^{2} \gg \mathrm{~m}^{2}$ is accidental
G. Altarelli

Ramond et al, Buchmuller et al

Inverted Hierarchy

Zee, Joshipura et al;
Mohapatra et al; Jarlskog et al;
Frampton,Glashow; Barbieri et al Xing; Giunti, Tanimoto.
sol $\xlongequal[\sum_{\square} \text { atm } \frac{2}{1}]{ } \mathrm{m}^{2} \sim 10^{-3} \mathrm{eV}^{2}$

An interesting model:
An exact $U(1) L_{e}-L_{\mu}-L_{\tau}$ symmetry for m_{v} predicts:
(a good $1^{\text {st }}$ approximation)

$$
\begin{aligned}
& \mathrm{m}_{v}=\mathrm{Um}_{v d i a g} \mathrm{U}^{\mathrm{T}}=\mathrm{m}\left[\begin{array}{ccc}
0 & a & -b \\
\mathrm{a} & 0 & 0 \\
-\mathrm{b} & 0 & 0
\end{array}\right] \text { with } \mathrm{m}_{v d i a g}=\left[\begin{array}{ccc}
m & 0 & 0 \\
0 & -m & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \bullet \theta_{13}=0 \quad \bullet \theta_{12}=\pi / 4 \\
& \theta_{\text {sun }} \text { maximal! } \quad \operatorname{\theta in}^{2} \theta_{23}=b^{2}
\end{aligned}
$$

Can arise from see-saw or dim-5 $L^{\top} H H^{\top} L$
G. Altarelli •1-2 degeneracy stable under rad. corr.'s
$1^{\text {st }}$ approximation

$$
\mathrm{m}_{v \text { diag }}=\left[\begin{array}{ccc}
\mathrm{m} & 0 & 0 \\
0 & -\mathrm{m} & 0 \\
0 & 0 & 0
\end{array}\right] \quad \mathrm{m}_{v}=U \mathrm{~m}_{v \text { diag }} U^{\top}=\mathrm{m}\left[\begin{array}{ccc}
0 & a & -b \\
a & 0 & 0 \\
-b & 0 & 0
\end{array}\right]
$$

- Data? This texture prefers $\theta_{\text {sol }}$ closer to maximal than $\theta_{\text {atm }}$
i.e $\theta_{\text {sol }}-\pi / 4$ small for $\left(\Delta \mathrm{m}^{2}{ }_{\text {sol }} / \Delta \mathrm{m}^{2}{ }_{\text {atm }}\right)_{\mathrm{LA}} \sim 1 / 40$

In fact: $12->\left[\begin{array}{ll}0 & a \\ a & 0\end{array}\right] \rightarrow \begin{aligned} & \text { Pseudodirac } \\ & \theta_{12} \text { maximal }\end{aligned} 23->\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \rightarrow \theta_{23} \sim 0(1)$
With perturbations: $\left[\begin{array}{ccc}0 & a & -b \\ a & 0 & 0 \\ -b & 0 & 0\end{array}\right] \longrightarrow\left[\begin{array}{ccc}\delta & 1 & 1 \\ 1 & \eta & \eta \\ 1 & \eta & \eta\end{array}\right] \begin{aligned} & \text { (modulo } \\ & \begin{array}{l}\text { o(1) } \\ \text { coeff.s) }\end{array}\end{aligned}$
one gets
Exp. (3 σ): 0.39-0.70

$$
1-\operatorname{tg}^{2} \theta_{12} \sim \mathrm{o}(\delta+\eta) \sim\left(\Delta \mathrm{m}^{2}{ }_{\text {sol }} / \Delta \mathrm{m}^{2}{ }_{\mathrm{atm}}\right)_{\mathrm{LA}}
$$

0.024-0.060

- In principle one can use the charged lepton mixing to go away from θ_{12} maximal.
In practice constraints from θ_{13} small $\left(\delta \theta_{12} \sim \theta_{13}\right)$
Frampton et al; GA, Feruglio, Masina ‘04

For the corrections from the charged lepton sector, typically $\left|\sin \theta_{13}\right| \sim\left(1-\tan ^{2} \theta_{12}\right) / 4 \cos \delta \sim 0.15$

${ }^{\circ}$ In general: more θ_{12} is close to maximal, more is IH likely
G. Altarelli

For charged lepton masses $\mathrm{L}_{\mathrm{e}}-\mathrm{L}_{\mu}-\mathrm{L}_{\tau}$ typically implies:

$$
m_{e} m_{e}^{\dagger} \sim\left[\begin{array}{lll}
\lambda^{4} & \lambda^{2} & \lambda^{2} \\
\lambda^{2} & 1 & 1 \\
\lambda^{2} & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \mathrm{Lm}_{\mathrm{e}} \mathrm{R} \\
& \mathrm{~m}_{\mathrm{e}}^{\prime}=\mathrm{U}^{+} \mathrm{m}_{\mathrm{e}} \mathrm{~V} \\
& \mathrm{~m}_{\mathrm{e}}^{\prime} \mathrm{m}_{\mathrm{e}}^{\prime}=\mathrm{U}^{+} \mathrm{m}_{\mathrm{e}} \mathrm{~m}_{\mathrm{e}}+\mathrm{U} \\
& \text { or } \mathrm{m}_{\mathrm{e}} \mathrm{~m}_{\mathrm{e}}^{+} \text {transforms as } \overline{\mathrm{L}} \mathrm{~L}
\end{aligned}
$$

After diagonalisation of charged leptons θ_{23} remains large, while modifications to θ_{13} and θ_{12} are small.
In conclusion IH is viable but prefers θ_{12} close to maximal, and given the exp. value of θ_{12}, needs θ_{13} near its upper bound
[Both anarchy and IH point to θ_{13} near bound]
G. Altarelli

Sensitivity to $\sin ^{2} 2 \theta_{13}$

Normal Hierarchy

- Assume 3 widely split light neutrinos.
- For u, d and I^{-}Dirac matrices the $3^{\text {rd }}$ generation eigenvalue is dominant.
- May be this is also true for $m_{v D}$: diag $m_{v D} \sim\left(0,0, m_{D 3}\right)$.
(but not at all necessary!)
- Assume see-saw is dominant: $\mathrm{m}_{v} \sim \mathrm{~m}^{\top} \mathrm{D}^{-1} \mathrm{~m}_{\mathrm{D}}$

See-saw quadratic in m_{D} : tends to enhance hierarchy

- Maximally constraining: GUT's relate $q, 1-$, v masses!
G. Altarelli
- A crucial point: in the 2-3 sector we need both
large $m_{3}-m_{2}$ splitting and large mixing.

$$
\begin{aligned}
& \mathrm{m}_{3} \sim\left(\Delta \mathrm{~m}_{\mathrm{atm}}^{2}\right)^{1 / 2} \sim 510^{-2} \mathrm{eV} \\
& \mathrm{~m}_{2} \sim\left(\Delta \mathrm{~m}_{\mathrm{sol}}^{2}\right)^{1 / 2} \sim 810^{-3} \mathrm{eV}
\end{aligned}
$$

- The "theorem" that large Δm_{32} implies small mixing (pert. th.: $\theta_{\mathrm{ij}} \sim 1 /\left|\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{j}}\right|$)
is not true in general: all we need is (sub)det[23]~0
- Example: $m_{23} \sim\left[\begin{array}{ll}x^{2} & x \\ x & 1\end{array}\right]$

So all we need are natural mechanisms for $\operatorname{det}[23]=0$
G. Altarelli

Det $=0$; Eigenvl's: $0,1+x^{2}$
Mixing: $\sin ^{2} 2 \theta=4 x^{2} /\left(1+x^{2}\right)^{2}$

For $\mathrm{x} \sim 1$ large splitting and large mixing!

Examples of mechanisms for $\operatorname{Det}[23] \sim 0$

$$
\text { seesaw } \quad m_{v} \sim m^{\top}{ }_{D} M^{-1} m_{D}
$$

1) $A \nu_{R}$ is lightest and coupled to μ and τ

King; Allanach; Barbieri et al......
$M \sim\left[\begin{array}{ll}\varepsilon & 0 \\ 0 & 1\end{array}\right] \Longrightarrow M^{-1} \sim\left[\begin{array}{cc}1 / \varepsilon & 0 \\ 0 & 1\end{array}\right] \approx\left[\begin{array}{cc}1 / \varepsilon & 0 \\ 0 & 0\end{array}\right]$
$m_{v} \sim\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{cc}1 / \varepsilon & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}a & c \\ b & d\end{array}\right] \approx 1 / \varepsilon\left[\begin{array}{cc}a^{2} & a c \\ a c & c^{2}\end{array}\right]$
2) M generic but m_{D} "lopsided" $\quad m_{D} \sim\left[\begin{array}{ll}0 & 0 \\ x & 1\end{array}\right]$ Albright, Barr; GA, Feruglio,

$$
m_{v} \sim\left[\begin{array}{ll}
0 & x \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
x & 1
\end{array}\right]=c\left[\begin{array}{cc}
x^{2} & x \\
x & 1
\end{array}\right]
$$

G. Altarelli

Caution: if $0->0(\varepsilon)$, det23 $=0$ could be spoiled by suitable $1 / \varepsilon$ terms in M^{-1}

An important property of $\mathrm{SU}(5)$

Left-handed quarks have small mixings ($\mathrm{V}_{\text {CKM }}$), but right-handed quarks can have large mixings (unknown).

- Hierarchical v 's and see-saw dominance

$$
L^{\top} m_{v} L->m_{v} \sim m_{D}^{2} / M
$$

allow to relate $\mathrm{q}, \mathrm{I}, v$ masses and mixings in GUT models. For dominance of dim-5 operators $->$ less constraints

$$
\lambda^{2} / M(\mathrm{LH})(\mathrm{LH})->\mathrm{m}_{v} \sim \lambda^{2} v^{2} / M
$$

- The correct pattern of masses and mixings, also including v 's, is obtained in simple models based on

$\mathrm{SU}(5) \mathrm{xU}(1)_{\text {flavour }}$

Ramond et al; GA, Feruglio+Masina; Buchmuller et al; King et al; Yanagida et al, Berezhiani et al; Lola et al.......

- SO(10) models could be more predictive, as are non abelian flavour symmetries, eg O(3)
G. Altarelli

Albright, Barr; Babu et al; Buccella et al; Barbieri et al; Raby et al; King, Ross

- The non trivial pattern of fermion masses and mixing demands a flavour structure (symmetry)
- (SUSY) $\operatorname{SU}(5) \mathrm{XU}(1)_{\mathrm{F}}$ models offer a minimal description of flavour symmetry
- A flexible enough framework used to realize and compare models with anarchy or hierarchy (direct or inverse) in v sector, with see-saw dominance or not.
- On this basis we found that there is still a significant preference for hierarchy vs anarchy G.A., F. Feruglio, I. Masina, hep-ph/0210342 (v2 Nov '03)

Previous related work: Haba,Murayama; Hirsch,King; Vissani; Rosenfeld,Rosner; Antonelli et al....
G. Altarelli

Hierarchy for masses and mixings via horizontal $U(1)$ charges.

Froggatt, Nielsen '79

Principle:

A generic mass term

\[

\]

$U(1)$ broken by vev of "flavon" field θ with $U(1)$ charge $q_{\theta}=-1$. The coupling is allowed: if vev $\theta=w$, and $w / M=\lambda$ we get:

$$
\overline{\mathrm{R}}_{1} \mathrm{~m}_{12} \mathrm{~L}_{2} \mathrm{H}(\theta / \mathrm{M})^{\mathrm{q} 1+\mathrm{q}^{2}+\mathrm{qH}} \Delta_{\text {charge }} \quad \mathrm{m}_{12}->\mathrm{m}_{12} \lambda \mathrm{q}^{1+\mathrm{q} 2+\mathrm{qH}}
$$

Hierarchy: More $\Delta_{\text {charge }}->$ more suppression (λ small)
One can have more flavons $\left(\lambda, \lambda^{\prime}, \ldots\right)$
with different charges (>0 or <0)etc $->$ many versions
G. Altarelli

With suitable charge assignments all relevant patterns can be obtained

$$
\begin{aligned}
& \text { Recall: } \mathrm{u} \sim 1010 \\
& \mathrm{~d}=\mathrm{e}^{\top} \sim \overline{5} 10 \\
& v_{\mathrm{D}} \sim \overline{5} 1 ; \mathrm{M}_{\mathrm{RR}} \sim 11
\end{aligned}
$$

No structure for leptons No automatic $\operatorname{det} 23=0$

Automatic $\operatorname{det} 23=0$
G. Altarelli

All entries are a given power of λ times a free o(1) coefficient

$$
m_{u} \sim v_{u}\left[\begin{array}{ccc}
\lambda^{10} & \lambda^{8} & \lambda^{5} \\
\lambda^{8} & \lambda^{6} & \lambda^{3} \\
\lambda^{5} & \lambda^{3} & 1
\end{array}\right]
$$

In a statistical approach we generate these coeff.s as random complex numbers $\rho \mathrm{e}^{\mathrm{it}}$ with $\phi=[0,2 \pi]$ and $\rho=[0.5,2]$ (default) or [0.8,1.2], or [0.95,1.05] or [0,1] (real numbers also considered for comparison)
For each model we evaluate the success rate (over many trials) for falling in the exp. allowed window:
(boundaries $\sim 3 \sigma$ limits)

Maltoni et al, hep-ph/0309130
$\mathrm{r} \sim \Delta \mathrm{m}_{\text {sol }} / \Delta \mathrm{m}^{2}{ }_{\text {atm }}$
G. Altarelli
$0.018<r<0.053$
$\left|U_{\mathrm{e} 3}\right|<0.23$
$0.30<\tan ^{2} \theta_{12}<0.64$
$0.45<\tan ^{2} \theta_{23}<2.57$
for each model the $\lambda, \lambda^{\prime}$ values are optimised

The optimised values of λ are of the order of λ_{c} or a bit larger (moderate hierarchy)
G. Altarelli

model	$\lambda\left(=\lambda^{\prime}\right)$
$A_{S S}$	0.2
$S A_{S S}$	0.25
$H_{(S S, I I)}$	0.35
$H_{(S S, I)}$	0.45
$I H_{(S S, I I)}$	0.45
$I H_{(S S, I)}$	0.25

Results with see-saw dominance (updated in Nov. '03):

Errors are linear comb. of stat. and syst. errors (varying the extraction procedure: interval of ρ, real or complex)
H 2 is better than SA, better than A , better than IH
G. Altarelli

Example: Normal Hierarchy

$q(5):(2,0,0)$
$\mathrm{q}(1):(1,-1,0)$

G.A., Feruglio, Masina

Note: not all charges positive
--> det23 suppression
$q(H)=0, q(\bar{H})=0$
$q(\theta)=-1, q\left(\theta^{\prime}\right)=+1$

In first approx., with $\left\langle\theta>/ M \sim \lambda \sim \lambda^{\prime} \sim 0.35 \sim 0\left(\lambda_{C}\right)\right.$

$$
\stackrel{10_{i} 0_{\mathrm{j}}}{\mathrm{~m}_{\mathrm{u}} \sim \mathrm{v}_{\mathrm{u}}}\left[\begin{array}{lll}
\lambda^{10} & \lambda^{8} & \lambda^{5} \\
\lambda^{8} & \lambda^{6} & \lambda^{3} \\
\lambda^{5} & \lambda^{3} & 1
\end{array}\right],
$$

$$
\mathrm{m}_{\mathrm{d}}^{{ }_{\mathrm{d}}^{2}=\mathrm{m}_{\mathrm{e}}^{\mathrm{T}} \sim \mathrm{v}_{\mathrm{d}}}\left[\begin{array}{lll}
\lambda^{7} & \lambda^{5} & \lambda^{5} \\
\lambda^{5} & \lambda^{3} & \lambda^{3} \\
\lambda^{2} & 1 & 1
\end{array}\right]
$$

$$
\stackrel{\overline{5}_{\mathrm{i}} 1_{\mathrm{j}}}{\mathrm{~m}_{\mathrm{vD}}} \sim \mathrm{v}_{\mathrm{u}}\left(\begin{array}{lll}
\lambda^{3} & \lambda & \lambda^{2} \\
\lambda & \lambda^{\prime} & 1 \\
\lambda & \lambda^{\prime} & 1
\end{array}\right)
$$

$$
\stackrel{M_{\mathrm{RR}}}{\mathrm{I}_{\mathrm{i}} 1_{\mathrm{j}}} \sim M\left(\begin{array}{lll}
\lambda^{2} & 1 & \lambda \\
1 & \lambda^{\prime 2} & \lambda^{\prime} \\
\lambda & \lambda^{\prime} & 1
\end{array}\right)
$$

G. Altarelli

Note: coeffs. O(1) omitted, only orders of magnitude predicted

With no see-saw (m_{v} generated directly from $L^{\top} m_{v} L \sim \overline{5} \overline{5}$) IH is better than A

[With no-see-saw H coincide with SA]

G. Altarelli

Note: we always include the effect of diagonalising charged leptons

What if θ_{23} is really maximal? Would be challenging!

All existing models invoke peculiar symmetries (non abelian or discrete are crucial) Early models: Barbieri et al, Wetterich....

A set of recent models are based on obtaining, in the basis of (nearly) diagonal charged leptons
Grimus, Lavoura..., Ma,....
This predicts $\theta_{13}=0$ and θ_{23} max.

$$
m_{\mathrm{v}}=\left[\begin{array}{lll}
x & y & y \\
y & z & w \\
y & w & z
\end{array}\right]
$$

Imposing a 2-3 perm. symmetry on $L^{\top} m_{v} L$ does not work, because $\bar{R} L$ then produces a charged lepton mixing that spoils θ_{23} max.
In some models, discrete broken symmetries are used to make charged leptons and Dirac neutrino masses diagonal, while the perm. symmetry is in the Majorana RR matrix

An interesting particular case Harrison, Perkins, Scott
A simple mixing matrix compatible with all present data

In the basis of diagonal ch. leptons:
$\mathrm{m}_{v}=\operatorname{Udiag}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right) \mathrm{U}^{\top}$
$U=\left[\begin{array}{lll}\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\end{array}\right]$

$$
m_{\mathrm{v}}=\frac{m_{3}}{2}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]+\frac{m_{2}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]+\frac{m_{1}}{6}\left[\begin{array}{ccc}
4 & -2 & -2 \\
-2 & 1 & 1 \\
-2 & 1 & 1
\end{array}\right]
$$

Eigenvectors: $m_{3} \rightarrow \frac{1}{\sqrt{2}}\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$

$$
m_{2} \rightarrow \frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad m_{1} \rightarrow \frac{1}{\sqrt{6}}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

Same as in Fritzsch models but with 1 and 3 interchanged, so that here θ_{23} is maximal while $\sin ^{2} 2 \theta_{12}=8 / 9$
Models based on the A4 discrete symmetry (even perm. of 1234) are the best but contrived

Ma..., also: GA, Feruglio (to appear soon)

Can v mixings arise only from the charged lepton sector?
G.A., Feruglio, Masina '04

$$
\begin{aligned}
& \left(\begin{array}{l}
v_{e} \\
v_{\mu} \\
v_{\tau}
\end{array}\right]=U\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \Longrightarrow U=\underset{\nearrow}{U_{e}}+U_{v} \\
& \text { flavour }
\end{aligned}
$$

$$
m_{e}=V_{e} m_{e} \text { diag }_{e}+\left\{\begin{array}{l}
\bar{R} m_{e} \mathrm{~L} \\
\mathrm{~L}_{\text {diag }}=\mathrm{U}_{\mathrm{e}} \mathrm{~L} \\
\mathrm{R}_{\text {diag }}=\mathrm{V}_{\mathrm{e}} \mathrm{R}
\end{array}\right.
$$

Assume that, in the lagrangian basis where all symmetries are specified, we have: $U_{v} \sim 1$. Then: $U \sim U_{e}^{+} \sim$ (small effects like s_{13} can be thought to arise from $U_{v}-1$.

$$
\left[\begin{array}{ccc}
c & -s & 0 \\
\frac{s}{\sqrt{2}} & \frac{c}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{s}{\sqrt{2}} & \frac{c}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$ Phases dropped for simplicity)

G. Altarelli

Given $m_{e}{ }^{\text {diag }} \sim m_{\tau} \operatorname{diag}[0, \eta, 1]$ (with $\eta=m_{\mu} / m_{\tau}$) we obtain:

$$
\mathrm{m}_{\mathrm{e}}=\mathrm{V}_{\mathrm{e}} \mathrm{~m}_{\mathrm{e}} \text { diagU } \sim \mathrm{V}_{\mathrm{e}} \mathrm{~m}_{\tau}\left[\begin{array}{ccc}
0 & 0 & 0 \\
\frac{s \eta}{\sqrt{2}} & -\frac{c \eta}{\sqrt{2}} \frac{\eta}{\sqrt{2}} \\
-\frac{s}{\sqrt{2}} & \frac{c}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \quad \begin{aligned}
& \text { For } \mathrm{V}_{\mathrm{e}} \sim 1 \text { this is } \\
& \text { a generalisation } \\
& \text { of lopsided (s large) } \\
& \text { but with det } \\
& 12=0
\end{aligned}
$$

Independent of V_{e} :

$$
\mathrm{m}_{\mathrm{e}}{ }^{+} \mathrm{m}_{\mathrm{e}} \sim \mathrm{U}^{+}\left(\mathrm{m}_{\mathrm{e}} \mathrm{diag}^{2}\right)^{2} \mathrm{U} \sim \mathrm{~m}_{\tau}^{2} \quad \frac{1+\eta^{2}}{2} \cdot\left[\begin{array}{ccc}
s^{2} & -c s & -s\left(1-2 \eta^{2}\right) \\
-c s & c^{2} & c\left(1-2 \eta^{2}\right) \\
-s\left(1-2 \eta^{2}\right) & c\left(1-2 \eta^{2}\right) & 1
\end{array}\right]
$$

- all matrix elements of same order (because s is large) "democratic" (hierarchy of masses non trivial)
${ }^{\bullet} s_{13}=0$ (i.e. eigenvector $\left.(c, s, 0)^{\top}\right)->$ first two columns proportional

Note: in minimal $\operatorname{SU}(5)$ models $m_{e}=m_{d}{ }^{\top}$. This implies $V_{e}=U_{d}$
Quark mixings are small: $\mathrm{V}_{\text {CKM }}=\mathrm{U}_{\mathrm{u}}+\mathrm{U}_{\mathrm{d}}$ Two possibilities:

- Both U_{u} and U_{d} nearly diagonal $->\mathrm{V}_{\mathrm{e}} \sim 1$
- $\mathrm{U}_{\mathrm{u}} \sim \mathrm{U}_{\mathrm{d}}$ nearly equal and non diagonal This is the way of democratic models:

$$
\mathrm{U}_{\mathrm{u}} \sim \mathrm{U}_{\mathrm{d}} \sim \mathrm{U}_{\mathrm{e}}->\mathrm{V}_{\mathrm{e}} \sim \mathrm{U}_{\mathrm{e}}
$$

$$
\mathbf{m}_{\mathrm{e}}=\mathbf{m}_{\tau}\left[\begin{array}{ccc}
0 & 0 & 0 \\
\frac{s \eta}{\sqrt{2}} & -\frac{c \eta}{\sqrt{2}} & \frac{\eta}{\sqrt{2}} \\
-\frac{s}{\sqrt{2}} & \frac{c}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

$$
\mathrm{V}_{\mathrm{e}} \sim \mathrm{U}_{\mathrm{e}}
$$

$$
\mathrm{m}_{\mathrm{e}}=\mathrm{m}_{\tau} \frac{1+\eta}{2} \cdot\left[\begin{array}{ccc}
s^{2} & -c s & -s(1-2 \eta) \\
-c s & c^{2} & c(1-2 \eta) \\
-s(1-2 \eta) & c(1-2 \eta) & 1
\end{array}\right]
$$

The first two columns are proportional

Our general conclusion:
From the charged lepton sector:
a large s_{23} can easily be produced
example: lopsided models

$$
\mathrm{m}_{\mathrm{e}}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & s_{23} & c_{23}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

but different orders for s_{12} and s_{13} is not simple
G. Altarelli

Still we have formulated a model where all mixings arise naturally from the charged lepton sector.

A set of $U(1)$ charges garantees that m_{v} is diagonal
The spectrum of one family is like in the 27 of E6 charged leptons

$$
\begin{gathered}
27=1+\underset{\mathrm{E} 6}{10}+\underset{\mathrm{SO}(10)}{10}+16=1+(5+\overline{5})+(1+\overline{5}+10) \\
\mathrm{SU}(5)
\end{gathered}
$$

A see-saw mechanism involving the two sets of $\overline{5}$ leeds to the required zero determinant condition in m_{e}

The model works but requires a complicated setup of charges and flavons.
Note that it borrows the see-saw tricks from the neutrino model building
G. Altarelli

Conclusion

We favour:
Normal models: θ_{23} large but not maximal, θ_{13}
not too small (θ_{13} of order λ_{C} or $\lambda_{C}{ }^{2}$ vs $\theta_{12}, \theta_{23} \sim 0(1)$)

- Semi anarchy
- Inverse hierarchy (needs θ_{13} close to present bound)

In particular

- Normal hierarchy with suppressed 23 determinant

Exceptional models: θ_{23} maximal or θ_{13} very small or also: all mixing from the charged lepton sector.... are interesting but rather contrived, not very plausible
G. Altarelli

