Quarkonium: New Developments

Chris Quigg · La Thuile 2004

A puzzling new state

A new charmonium spectroscopy?

A new quarkonium spectroscopy

Open issues for theory & experiment

Exciting times for hadron spectroscopy: many new narrow states

 $\star \eta'_c \text{ in } B \to KK_S K^{\mp} \pi^{\pm}$ $\star \text{ Narrow } D_s \text{ levels } (0^{++}, 1^{++})$ $\star \text{ Pentaquark } K^+ n : \Theta^+ (1540)$ $\boxed{\star X(3872) \to \pi^+ \pi^- J/\psi}$

Each raises questions of interpretation, and offers opportunities.

Phys. Rev. Lett. 91, 262001 (2003)

http://www-d0.fnal.gov/Run2Physics/ckm/Moriond_2003/X_conf_note_v9.ps

Issues:

 η'_{c} : small splitting from ψ' $D_s(2317)$ and $D_s(2463)$: surprisingly light; chiral symmetry? $\Theta^+(1540)$: chiral soliton? uncorrelated quarks? 3^* diquark picture? X(3872): Mass; radiative decays? $D^0 \overline{D}^{*0}$ threshold?

General reasons for interest ...

Many charmonium levels: 9 or 10 narrow states, plus ~60 states within 800 MeV of threshold. Potential models give a good account of the spectrum, but cannot be the whole story. Lattice QCD is increasingly capable for quarkonium spectroscopy. New states seen in e^+e^- , B decay, 2-photon, hadronic production: new \int^{PC} accessible.

In the wake of the η'_c news ...

E-L-Q: B-Meson Gateways to Missing Charmonium Levels, PRL 89, 162002 (2002)

 $\eta'_{c}(2^{1}S_{0})$ and $h_{c}(1^{1}P_{1})$ below $D\overline{D}$ threshold $\eta_{c2} (1^{1}D_{2}, 2^{-+})$ and $\psi_{2} (1^{3}D_{2}, 2^{--})$ between $D\overline{D}$ threshold and $D\overline{D}^{*}$

long-anticipated narrow states

(related work by Ko-Lee-Song, Suzuki)

 $b \rightarrow (c\bar{c})_1 + \dots \text{ or } b \rightarrow (c\bar{c})_8 + \dots$

ELQ	$c\bar{c}$ state		$\Gamma(B \to (c\bar{c}) + X) / \Gamma(B \to \text{all}) \ (\%)$
	1^1S_0	η_c	$pprox 0.53^a$
	1^3S_1	$J\!/\!\psi$	$0.789 \pm 0.010 \pm 0.034^{bc}$
	$1^1 P_1$	h_c	0.132 ± 0.060^{d}
	$1^{3}P_{0}$	χ_{c0}	0.029 ± 0.012^{d}
	$1^{3}P_{1}$	χ_{c1}	$0.353 \pm 0.034 \pm 0.024^{be}$
	$1^3 P_2$	χ_{c2}	$0.137 \pm 0.058 \pm 0.012^{b}$
	$2^1 S_0$	η_c'	$pprox 0.18^a$
	2^3S_1	ψ'	$0.275 \pm 0.020 \pm 0.029^{b}$
	$1^1 D_2$	η_{c2}	0.23^f
	$1^3 D_1$	ψ	0.28^{f}
	$1^3 D_2$	ψ_2	0.46^{f}
	$1^3 D_3$	ψ_3	0.65^f

Expect roughly similar BRs

Expect small hadronic widths

ELQ 2002

```
110 \text{ keV}^{e}
\approx 45 \text{ keV}^{d}
216 \text{ keV}^{f}
43 \pm 15 \text{ keV}^{g} \rightarrow 140 \text{ keV}
36 \text{ keV}^{f} \text{ 80 \pm 32 \pm 21 \text{ keV (BES)}}
\approx 45 \text{ keV}^{d} \text{ < 55 keV, 90\% CL (CLEO)}
102 \text{ keV}^{f}
\approx 45 \text{ keV}^{d}
```

Radiative rates not small!

TABLE III. Calculated and observed rates for radiative transitions among charmonium levels in the potential (1).

	γ energy	Partial w	vidth (keV)
Transition	k (MeV)	Computed	Measured ^a
$\psi \xrightarrow{\mathrm{M1}} \eta_c \gamma$	115	1.92	1.13 ± 0.41
$\chi_{c0} \xrightarrow{\text{E1}} J/\psi\gamma$	303	120 (105) ^b	98 ± 43
$\chi_{c1} \xrightarrow{\text{E1}} J/\psi\gamma$	390	242 (215) ^b	240 ± 51
$\chi_{c2} \xrightarrow{\text{E1}} J/\psi\gamma$	429	315 (289) ^b	270 ± 46
$h_c \stackrel{\text{EI}}{\longrightarrow} \eta_c \gamma$	504	482	
$\eta'_{c_{\Gamma_1}} \stackrel{\text{EI}}{\longrightarrow} h_c \gamma$	126	51	
$\psi' \xrightarrow{\text{EI}}{\longrightarrow} \chi_{c2} \gamma$	128	29 (25) ^b	22 ± 5
$\psi' \xrightarrow{\text{EI}}{\longrightarrow} \chi_{c1} \gamma$	171	41 (31) ^b	24 ± 5
$\psi' \stackrel{\text{EI}}{\longrightarrow} \chi_{c0} \gamma$	261	46 (38) ^b	26 ± 5
$\psi' \stackrel{\text{MI}}{\longrightarrow} \eta'_c \gamma$	32	0.04	
$\psi' \xrightarrow{\mathrm{MI}} \underline{\eta}_c \gamma$	638	0.91	0.75 ± 0.25
$\psi(3770) \xrightarrow{\text{EI}}{\longrightarrow} \chi_{c2} \gamma$	208	3.7	
$\psi(3770) \xrightarrow{\text{EI}} \chi_{c1} \gamma$	250	94	
$\psi(3770) \xrightarrow{\text{EI}} \chi_{c0} \gamma$	338	287	
$\eta_{c2} \xrightarrow{\text{E1}} \psi(3770)\gamma$	45	0.34	
$\eta_{c2} \xrightarrow{\text{EI}} h_c \gamma$	278	303	
$\psi_2 \xrightarrow{\text{EI}} \chi_{c2} \gamma$	250	56	
$\psi_2 \xrightarrow{\text{EI}} \chi_{c1} \gamma$	292	260	

^aDerived from Ref. [21] ^bCorrected for coupling to decay channels as in Ref. [14]

What we expected: prominent radiative decays

$egin{aligned} \mathcal{B}(\mathfrak{h}_{c} ightarrow\eta_{c}\gamma)pproxrac{2}{5}\ &\mathcal{B}(\eta_{c2} ightarrow\mathfrak{h}_{c}\gamma)pproxrac{2}{3}\ &\mathcal{B}(\psi_{2} ightarrow\chi_{c1,2}\gamma)pproxrac{4}{5}, ext{ of which }\mathcal{B}(\psi_{2} ightarrow\chi_{c1}\gamma)pproxrac{2}{3} \end{aligned}$

+ useful rates for $\pi\pi$ cascades

What we know about X(3872)

Mass higher than simplest expectation; lies at DD* threshold 3871.7 ± 0.6 MeV (3815 MeV)

In CDF & DØ, prompt production not negligible

$$\frac{\mathcal{B}(B^+ \to K^+ X) \cdot \mathcal{B}(X \to \pi^+ \pi^- J/\psi)}{\mathcal{B}(B^+ \to K^+ \psi') \cdot \mathcal{B}(\psi' \to \pi^+ \pi^- J/\psi)} = 0.063 \pm 0.014$$

No sign yet of radiative cascades to IP states

$$\frac{\Gamma(X \to \gamma \chi_{c1,2})}{\Gamma(X \to \pi^+ \pi^- J/\psi)} < 0.9, 1.1$$

Alternatives to charmonium: deusons deuteron-like "molecules" formed by attractive π exchange between D^0 and \overline{D}^{*0} Most attractive : $I = 0, J^{PC} = 0^{-+}, 1^{++}$ Parity forbids decay into $(\pi\pi)_{I=0} J/\psi$ Hadronic cascade must be $(\pi\pi)_{I=1}J/\psi$ dissociation: $X \to (D^0 \overline{D}^{*0})_{virtual} \to D^0 \overline{D}^0 \pi^0$

N.A.Törnqvist, hep-ph/0308277; M.Voloshin, hep-ph/0309307

Alternatives to charmonium: hybrid mesons Expected levels: anything but 2⁻⁻

Chromoelectric flux tubes : $(0, 1, 2)^{++}$, 1^{+-} Chromomagnetic flux tubes : $(0, 1, 2)^{-+}$, 1^{--}

Estimated masses 4.1 ± 0.2 GeV

Possibly enhanced decay rate to $\eta J/\psi$

F.E. Close & S. Godfrey, hep-ph/0305285

Coupling to open-charm channels Phenomenological approach:

Evaluate $\langle n^3 S_1 | \mathcal{H}_{int} | D\bar{D} \rangle$, etc. $\mathcal{H}_{int} = \frac{3}{8} \int d\vec{x} d\vec{y} J_{0a}(\vec{x}) V(|\vec{x} - \vec{y}|) J_o^a(\vec{y})$ $J_0^a = \bar{c} \gamma_0 t^a c + \bar{q} \gamma_0 t^a q$

Calculate pair-creation amplitudes, solve coupled-state system

Eichten, Gottfried, Kinoshita, Lane, Yan, PRD 21, 203 (1980)

Effects on the spectrum Coupling to virtual channels induces spin-dependent forces in charmonium near threshold, because $M(D^*) > M(D)$

State	Mass	Centroid	Splitting (Potential)	Splitting (Induced)
$\frac{1^1\mathrm{S}_0}{1^3\mathrm{S}_1}$	$2979.9^a\ 3096.9^a$	3067.6^{b}	-90.5 + 30.2	$+2.8 \\ -0.9$
$1^{3}P_{0}$ $1^{3}P_{1}$ $1^{1}P_{1}$ $1^{3}P_{2}$	$egin{array}{c} 3415.3^a\ 3510.5^a\ 3525.3\ 3556.2^a \end{array}$	3525.3^{c}	-114.9^{e} -11.6^{e} $+1.5^{e}$ -31.9^{e}	$+5.9 \\ -2.0 \\ +0.5 \\ -0.3$
$\begin{array}{c} 2^1 S_0 \\ 2^3 S_1 \end{array}$	${3637.7}^a\ {3686.0}^a$	3673.9^{b}	-50.4 + 16.8	$+15.7 \\ -5.2$
$1^{3}D_{1}$ $1^{3}D_{2}$ $1^{1}D_{2}$ $1^{3}D_{3}$	$\frac{3769.9^{ab}}{3830.6}\\3838.0\\3868.3$	$(3815)^d$	$-40 \\ 0 \\ 0 \\ +20$	$-39.9 \\ -2.7 \\ +4.2 \\ +19.0$
$2^{3}P_{0}$ $2^{3}P_{1}$ $2^{1}P_{1}$ $2^{3}P_{2}$	$3 931.9 \\ 4 007.5 \\ 3 968.0 \\ 3 966.5$	3968^d	$-90 \\ -8 \\ 0 \\ +25$	+10 +28.4 -11.9 -33.1

ELQ, hep-ph/0401210

$M(\eta_c') = 3637.7 \pm 4.4$

Hyperfine splitting:

$\Rightarrow \mathcal{M}(\psi') - \mathcal{M}(\eta'_c) = 67 \text{ MeV}$

 $(48.3 \pm 4.4 \text{ MeV observed})$

20.9 MeV induced shift \Rightarrow agrees

Suppression of radiative decay rates (reduced overlap between initial & final states)

 $\Psi(1^{3}S_{1}) = 0.983 |1^{3}S_{1}\rangle - 0.050 |2^{3}S_{1}\rangle - 0.009 |3^{3}S_{1}\rangle + \dots; \ 96.8\%(c\bar{c})$

 $\Psi(1^{3}P_{1}) = 0.914 |1^{3}P_{1}\rangle - 0.075 |2^{3}P_{1}\rangle - 0.015 |3^{3}P_{1}\rangle + \dots; 84.1\%(c\bar{c})$

 $\Psi(1^{3}D_{2}) = 0.754 |1^{3}D_{2}\rangle - 0.084 |2^{3}D_{2}\rangle - 0.011 |3^{3}D_{2}\rangle + \dots; \ 57.6\%(c\bar{c})$

Transition	Partial width (keV)
$(\gamma \text{ energy in MeV})$	Computed
$1^{3}\mathrm{D}_{1}(3770) \to \chi_{c0}\gamma(338)$	$254 \rightarrow 225$
$1^3 D_2(3831) \rightarrow \chi_{c2} \gamma(266)$	59 ightarrow 45
$1^{3}D_{2}(3831) \rightarrow \chi_{c1} \gamma(308)$	$264 \rightarrow 212$
$1^{3}D_{2}(3872) \rightarrow \chi_{c2} \gamma(303)$	$85 \rightarrow 45$
$1^3\mathrm{D}_2(3872) \to \chi_{c1}\gamma(344)$	$362 \rightarrow 207$
$1^{3}\mathrm{D}_{3}(3868) \to \chi_{c2}\gamma(303)$	$329 \rightarrow 286$
$1^{3}D_{3}(3872) \rightarrow \chi_{c2} \gamma(304)$	$341 \rightarrow 299$

Decays into open charm

Sensitivity already approaches interesting range

Could X(3872) be $2^{1}P_{1}$?

Radiative decay would be hindered MI (Could explain small radiative BR) Belle: decay angular distribution disfavors Strong cascade: s-wave $\pi\pi$ by L=1 (not 2) Seems improbable: 100 MeV above $D^0 \overline{D}^{*0}$ in coupled-channel model;

Likely to be too broad if DD* open

Production of DD* molecule by fusion

 $\frac{\Gamma(\Upsilon(4S) \to Xhh')}{\Gamma(\Upsilon(4S) \to D^0 \bar{D}^{*0} hh') + \Gamma(\Upsilon(4S) \to \bar{D}^0 D^{*0} hh')} \approx 10^{-24}$

Braaten & Kusunoki, hep-ph/0402177

Following up X(3872)

Verify I=0: look for charged partner, check dipion angular distribution, see $\pi^0\pi^0$

Determine (or at least restrict) J^{PC}

Look for radiative decays: $\gamma \chi_{c1}, \gamma \chi_{c2}$

Measure prompt vs B-decay at CDF, DØ

Look for $D^0 \overline{D}^0 \pi^0$ and $D^0 \overline{D}^0 \gamma$

Following up X(3872)

Measure $\pi\pi$ mass distribution

Look for structure in $D\overline{D}, D\overline{D}^*, D^*\overline{D}^*$

Find structures or set limits on other $\pi^+\pi^-J/\psi$

Examine
$$J/\psi + (\pi^{\pm}, \eta, K^{\pm}, K_S, p, \Lambda, ...)$$

Measure rates for $b \rightarrow (c\overline{c}) + anything$

Similar studies in $b\bar{b}$

Theoretical work needed

Charmonium: understand threshold influence 🗸

understand production

improve understanding of hadron cascades

compare Y family

Theoretical work needed

Hybrid mesons: make some specific predictions, sketch a decision tree

Molecular charmonium: production rates, decay patterns

Lattice: surpass the potential model

Whatever X(3872) turns out to be, much to do

If charmonium, find other states, advance beyond one-channel NRQM

Molecular states and hybrid mesons may still exist — how to form them?

If not charmonium, a new kind of spectroscopy

(Charmonium states still await discovery)

The Next Wave: $b\bar{c}$ Spectroscopy

Eichten & Quigg, PR D49, 5845 (1994)

Reasons for Interest ...

- Experimental tour-de-force
- Third quarkonium system
- Intermediate between heavy-heavy and heavy-light mesons
- Sensitive to relativistic effects, configuration mixing
- Rich pattern of weak decays (b decay, c decay, annihilation)

CDF: $B_c \to J/\psi \ell(\nu)$

 $M(B_c) = 6.40 \pm 0.39$ (stat.) ± 0.13 (sys.) GeV/ c^2

Phys. Rev. Lett. 81, 2432 (1998)

Lattice QCD: including dynamical quarks

hep-lat/0304004 al et Davies

HPQCD [Glasgow/Fermilab]

Andreas Kronfeld · Aspen Winter Physics 2004

• with quarkonium baseline (preliminary)

 $= m_{B_c} = 6.307 \pm 0.002^{+0.000}_{-0.010} \text{ GeV}$

 \equiv systematic dominated by the B_{c} Darwin correction

• with heavy-light baseline (preliminary) = $m_{B_c} = 6.253 \pm 0.017^{+0.030}_{-0.000} \sim 50$ GeV

 \equiv systematic dominated by the D_{c} Darwin correction

• Further study of *m*^{sea} & *a* dependence underway

X-theory papers

General diagnostics: S. Pakvasa & M. Suzuki, hep-ph/0309294; F. E. Close & P. R. Page, hep-ph/0309253.

Charm Molecules: N.A. Törnqvist, hep-ph/ 0308277; M. Voloshin, hep-ph/0309307.

Hybrid mesons: F. E. Close & S. Godfrey, hep-ph/ 0305285.

Charmonium: Barnes & Godfrey, hep-ph/0311162; ELQ, hep-ph/0401210