Experimental Review on Quarkonium

Vaia Papadimitriou (Fermilab and Texas Tech University) XVIII RENCONTRES DE PHYSIQUE DE LA VALLEE D'AOSTE March 3, 2004

- TEVATRON $p\overline{p}$ (Production and Spectroscopy)
 - Collider and fixed target
- LEP e^+e^- (Production)
- HERA $e^{\pm}p$ (Production)
 - Collider and fixed target

(Inelastic production measurements)

- KEKB-PEPII e^+e^- (Production and Spectroscopy)
- Conclusions

ψ(2S) χ_c Υ χ_b η_b X(3872)

J/ψ

E866/NuSea

HERA

Vaia Papadimitriou (Fermilab)

March 3, 2004

Privileged window into the QCD world.

Multi-scale systems probing all energy regimes of QCD

Renewed interest, puzzles, challenges, discovery of new states.

Many running experiments cross checking each other (e⁺e⁻ machines, ep machines, ppbar machines) and challenging theory. Getting information from photon-photon fusion, photon-gluon fusion, gluon-gluon fusion, etc.). Answers and more challenges are around the corner.

Various theoretical approaches have matured and can cross check

each other. Vaia Papadimitriou (Fermilab)

March 3, 2004

.

Tevatron Performance

Stores 3245, 3261

02/18/04, 02/27/04

6.26, 6.75 x 10^{31} cm⁻²s⁻¹

Duration of 35.3, 41.0 hours

- *Tevatron (Run I 1992-96,* $\int L dt = 110 \ pb^{-1}$):
 - $p \rightarrow \leftarrow pbar at \sqrt{s} = 1.8 TeV, 3.5 \ \mu s between collisions$
- *Tevatron (Run II 2002-Present,* $\int L dt = -430 \text{ pb}^{-1}$):
 - $p \rightarrow \leftarrow pbar \ at \ \sqrt{s} = 1.96 \ TeV, 396 \ ns \ between \ collisions$

Collider Run II Integrated Luminosity

Tevatron Performance

Integrated Luminosity since 11/23/03

Prompt / Direct J/ ψ Cross Section - CDF

Direct $\psi(2S)$ Cross Section - CDF

- $\psi(2S) \rightarrow \mu\mu$, Run IA data, 18 pb⁻¹
- "Central muons" ($|\eta| < 0.6$)
- Lifetime information used to extract prompt component
- *Prompt* \equiv *direct* for $\psi(2S)$
- Colour singlet fusion: α_s^3/p_T^8
- CS fragmentation (Braaten, Yuan, PRL 71(1993) 1673): $\alpha_s^{5/p_T^{4}}$ $g^* \rightarrow 2g + c\overline{c}({}^{3}S_1^{(1)}) \rightarrow \psi(2S)$
- NRQCD expansion $d\sigma(H) = \sum_{n} d\sigma[c\overline{c}(n)]\langle O^{H}(n) \rangle$
 - n includes colour singlet and octet states
 - Expansion in α_s and v (relative velocity of quark and anti-quark)

Vaia Papadimitriou (Fermilab)

- Colour octet fragmentation (Braaten, Fleming, PRL 74(1995) 3327): $\alpha_{\rm S}^{3} {\rm v}^{4}/{\rm p}_{\rm T}^{4}$ $g^* \rightarrow c \overline{c} ({}^{3}S_{1}^{(8)}) \rightarrow \psi(2S)$
- Fragmentation dominates at high p_T March 3, 2004

Direct J/ ψ Cross Section - CDF

Vaia Papadimitriou (Fermilab)

March 3, 2004

LEP2 - DELPHI

• Photoproduction ($\gamma\gamma \rightarrow J/\psi X$) at LEP ^{617 pb-1} PL B565(2003) 76</sup> Comparison of theory with data clearly favors NRQCD over CSM. Theory uncertainties mainly from CO ME and renormalization/factorization scales.

Vaia Papadimitriou (Fermilab)

Klasen, Kniehl, Mihaila, Steinhauser PRL 89(2002) 032001

J/ψ Cross Section – Run II (CDF)

Vaia Papadimitriou (Fermilab)

 24.5 ± 0.5 (stat) ± 4.7 (syst)nb

Central-Forward J/*\psi Production (CDF/D0)*

Reasonable agreement between central and forward measurements

CDF Run II: low p_T muon coverage ($|\eta| < 1.5$)

March 3, 2004

J/\u03c6 Cross Section - Run II

Cross section as a function of rapidity

Y Cross Section at CDF

<u>Run I:</u> PRL 88 (2002)161802

χ_b Feed-down to $\Upsilon(1S)$ at CDF

$$> \chi_{b}(1P, 2P) \rightarrow \Upsilon(1S)\gamma$$

 $\geq p_T(\Upsilon) > 8 \text{ GeV/c}$

 $\succ \gamma$ backgrounds: π^0 , η , K_s decays

Direct $\Upsilon(1S)$: $(50.9 \pm 8.2 \pm 9.0)\%$ From $\chi_b(1P)$: $(27.1 \pm 6.9 \pm 4.4)\%$ From $\chi_b(2P)$: $(10.5 \pm 4.4 \pm 1.4)\%$ From $\Upsilon(2S)$: $(10.7^{+7.7}_{-4.8})\%$

From $\Upsilon(3S)$: $(0.8^{+0.6}_{-0.4})\%$

Input in theoretical calculations of Bottomonium cross sections

J/ψ Polarization

- All CDF Run I data, $\int \mathbf{L} \, \mathbf{dt} = 110 \, \mathbf{pb}^{-1}$
- $p_T > 4 \text{ GeV}, |y| < 0.6$
- Small acceptance at large $|\cos \theta|$
- χ^2 fit using templates for longitudinal and transverse polarization

J/ψ Polarization

CDF, PRL 85 (2000) 2886

Braaten, Kniehl, Lee PRD 62 (2000) 094005

- Need to take into account $\psi(2S)$ and χ_c contributions
- Data do not show a trend towards transverse polarization at large p_{T}
- Phenomenological models give better description (E.g. colour evaporation **model:** mostly unpolarized J/ψ at large p_T) March 3, 2004

$\psi(2S)$ Polarization

Y Polarization at CDF

<u>Run I:</u> PRL 88 (2002)161802

> similar to $c\overline{c} \rightarrow$ as yet inconclusive > Insufficient data with $p_T > 20 \text{ GeV/c}$

E866/Nusea, $\sqrt{s}=38.8 \text{ GeV}$

$p + Cu \rightarrow \mu^+ \mu^- X$ (800 GeV proton beam)

 $0 < x_F < 0.6$

p_T < 4 GeV/c (transverse to beam axis)

- $\Upsilon(2S)$ and $\Upsilon(3S)$ not distinguished
- Subtract Drell-Yan μμ continuum (100% transverse polarization)
- sideband fit: $\alpha{=}1.008\pm0.016\pm0.020$

E866/Nusea, Y polarization

Run II – (CDF/D0 on χ_c)

Tevatron/Fixed Target Summary

• <u>Tevatron:</u>

- Direct J/ ψ and ψ (2S) production (CDF) is in excess of CSM predictions by a factor of ~50
- J/ ψ cross section in the (2.5 < | $\eta^{J/\psi}$ | < 3.7) range (D0) consistent with CDF data for central J/ ψ production
- New cross sections, at low p_{T_1} available. Need more theory calculations
- J/ ψ and ψ (2S) polarization measurements (CDF) appear not to support the COM prediction (more statistics needed)
- $\sigma \chi_{c2} / \sigma \chi_{c1} = 0.96 \pm 0.27 (\text{stat}) \pm 0.11 (\text{sys}) (\text{CDF}); \text{ NRQCD prediction: } 1.1 \pm 0.2$
- Same shape for dσ/dp_T vs p_T for 3 Y(n) states. Fits of CS and CO matrix elements describe the Y(n) cross sections (CDF)
- Y(1S) polarization: $\Gamma_{\rm L}/\Gamma = 0.39 \pm 0.11$ ($\alpha = -0.12 \pm 0.22$) (CDF) consistent with COM calculations
- Results on production of Y(1S) from χ_b decays
 Y(1S) direct production: [50.9 ± 8.2(stat) ± 9.0(sys)] % (CDF)
- Diffractive to total production rate for $|\eta| < 1$ is $[1.45 \pm 0.25]\%$ (CDF)

Vaia Papadimitriou (Fermilab)

March 3, 2004

Tevatron/Fixed Target Summary

• Fixed Target energies:

- ♦ Y(1S): significant positive transverse production polarization for either p_T > 1.8 GeV/c or x_F > 0.35 (E866)
- Y(2S+3S) (unresolved): large transverse production polarization at all measured p_T and x_F (E866)

Quarkonia at HERA

HERA ("*Run I*" ended in September 2000, $\int L dt > 100 \text{ pb}^{-1}$): • $e^{\pm}(27.5 \text{ GeV}) \rightarrow \leftarrow p (820/920 \text{ GeV}) \text{ at } \sqrt{s} = 300/320 \text{ GeV}$

 $Q^2 :\approx xys$ Vaia Papadimitriou (Fermilab) DIS

 $\bullet \quad 1 < Q^2 < 100 \ GeV^2$

- Tagged/untagged photoproduction
 - Scattered e not seen in main detector
 - Median $Q^2 \cong 10^{-4} \text{ GeV}^2$
- Decays into e^+e^- and $\mu^+\mu^-$
- Central tracking ($|\eta| < 1.8$)
 - 30 < W < 180 GeV

HERA "Run II" under way;

Delivered ~ $\int L dt = 22 \ pb^{-1}$ so far. Achieved up to 0.8 pb^{-1}/day . $\int L dt \sim 100 \ pb^{-1}$ expected by the Sept. 2004); e^{\pm} polarized beams.

$J\!/\psi$ at HERA

- At small z contributions from
 - Resolved photon
 - B production
- Background increases with decreasing z

High Q^2/p_T will greatly benefit from increase in luminosity

J/ ψ Photoproduction: CSM

Colour Singlet Model: NLO calculation of direct photon gluon fusion process (M.Krämer)

LO: too steep NLO: good agreement

J/ ψ Photoproduction: NRQCD

• p_T spectra similar at low and medium z

H1: EJ C25 (2002) 25 Zeus: EJ C27 (2002) 173

- NRQCD (including CS and CO): softer than data
 - Contributions from B decays in data?

Vaia Papadimitriou (Fermilab)

March 3, 2004

J/ ψ Photoproduction: inelasticity

EJ C25 (2002) 25 EJ C27 (2003) 173 CO long-distance ME taken from fit to CDF data

NLO CSM agrees with data; Theoretical uncertainties do not allow strong conclusions on CO Left: NRQCD describes shapes (large LDME uncertainties)
Right: Damping at high z for BSW (LO, CS+CO) ⇒ better agreement

$$\sigma_{\psi(2S)} / \sigma_{\psi(1S)} = 0.33 \pm 0.10^{+0.01}_{-0.02}$$

Flat, consistent with 0.24 from KZSZ (LO,CS)

Estimate of J/ ψ fraction coming from $\psi(2S)$ Cascade decays consistent with expectations (15%)

Photoproduction: helicity

EJ C27 (2003) 173

 $dN/dcos\theta^{\boldsymbol{*}} \propto 1 + \alpha \; cos^2\theta^{\boldsymbol{*}}$

BKV – collinear calculations

 $Baranov - k_t$ -factorization

Statistics is not yet sufficient to discriminate between models

H1 - J/ ψ Electroproduction

<u>Theory</u>: LO Colour Singlet Model LO NRQCD (CS+CO) (B.A.Kniehl, L.Zwirner, NP B621(2002) 337)

EJ C25 (2002) 41

CS alone: normalization low, too steep in p_T

NRQCD (CS+CO): too high at low Q², p_T better at high Q², p_T

Need: NLO calculations More data at larger Q², p_T

Zeus - J/ ψ Electroproduction: Q² and W

•KZ(CS) and LZ(CS): lower but consistent with data

- •KZ(CS+CO): mostly overshoots data
- •LZ(kt, CS): agrees with data

Vaia Papadimitriou (Fermilab)

H1 - J/ ψ Electroproduction

Vaia Papadimitriou (Fermilab)

March 3, 2004

HERA photo/electro production summary

• <u>Photoproduction</u>

- NLO corrections enable one to describe high production of J/ψ within CSM
- Theoretical uncertainties are large: CO contributions cannot be excluded
- <u>Electroproduction</u>
 - LO CS: Below but consistent with data, except high p_T range (NLO corrections?)
 - **NRQCD (CS+CO):** too high at large z and small p_T^* values
 - kt-factorization (CS): agrees with data except at high p_T* (too low) and in photon direction (too high)

HERA-B

Data taking of 30 October 2002 - 3 March 2003 provided:

- ~ 300,000 triggered J/ψ (e⁺e⁻/μ⁺μ⁻)
- ~ 210·10⁶ Minimum bias events

Vaia Papadimitriou (Fermilab)

Charmonium Production : χ_c

$\psi(2S)$ to J/ ψ ratio and J/ $\psi\,$ polarization

Double $C\overline{C}$ production at BELLE

$$\sigma(e^+e^-
ightarrow J/\psi\eta_c) = 46\pm 6^{+7}_{-9}~{
m fb}$$

LO calculations: 2.31 ± 1.09 fb

J/ψ production with associated charmed hadrons

> 0.48 90% C.L.

NRQCD factorization: ~ 0.1

Observation of X(3872) State at BELLE

 $5790 \pm 140 \ \psi$ (25) events $580 \pm 100 \ \text{X}$ events

X Width : 4.2 ± 0.8 MeV

Observation of X(3872) State at CDF

 $\psi(2S)$ Width : 3.44 ± 0.09 MeV/c²

 $M_{x} = 3871.3 \pm 0.7 \text{ (stat)} \pm 0.4 \text{ (syst)} \text{ MeV/}c^{2}$

Vaia Papadimitriou (Fermilab)

March 3, 2004

Observation of X(3872) State at D0

 $X \rightarrow J/\psi \pi^+ \pi^-$

Compare signal yield fractions for X(3872) and $\psi(2S)$

The Charmonium System

Search for X(3872) $\rightarrow \gamma \chi_{c1}(\gamma \chi_{c2})$ at BELLE

Contrary to expectations for charmonium D states

Search for $X(3872) \rightarrow DD$ (BELLE)

88 fb⁻¹

hep-ex/0307061

Br(B[±]→X(3872)K[±]) x Br(X → $(5.6 \times 10^{-5} \text{ at } 90\% \text{C.L.})$

Br(B[±]→X(3872)K[±]) x Br(X →D⁺D⁻) < 4 x 10⁻⁵ at 90%C.L.

 $Br(B^{\pm} \rightarrow X(3872)K^{\pm}) \times Br(X \rightarrow \pi^{0})$

< 6 x 10⁻⁵ at 90%C.L.

J/ ψ helicity distribution and h_c '(1⁺⁻) - **BELLE**

Is the X(3872) the $2^{3}P_{1}$ State? (BELLE)

Vaia Papadimitriou (Fermilab)

March 3, 2004

Search for X(3872) \rightarrow J/ $\psi\eta$ (BABAR)

Conclusions

- Lots of results, many surprises
- Very fruitful interaction between theory and experiment
- Tevatron Run II expected to provide (4.4-8.5) fb⁻¹ by October 2009
- HERA-II expected to deliver 0.75 fb⁻¹ equally distributed over charges and helicities by end of 2007. Particular effort will be made to reach 1 fb⁻¹
- BELLE is expected to have 500 fb⁻¹ by the end of 2006; 1 ab⁻¹ by the end of 2008 (~1B BBbar pairs)
- BABAR is expected to have 500 fb⁻¹ by the end of 2006
- A lot of answers and surprises awaiting!!

Backup Slides

BACKUP SLIDES

Diffractive J/ ψ Production

• Use Beam-Beam-Counters and forward calorimeter towers to "tag" diffractive events (gap in $2.4 < |\eta| < 5.9$)

Ratio of diffractive to total production rate: $R_{y} = 1.45 \pm 0.25$ %

Run II - CDF

J/ψ Cross Section – Run II (CDF)

Vaia Papadimitriou (Fermilab)

 $24.5 \pm 0.5(\text{stat}) \pm 4.7(\text{syst})\text{nb}$

HERA Production Mechanisms

Zeus - J/ ψ Electroproduction: inelasticity

- KZ(CS+CO): too high at large z values (high-z resummation needed?)
- CS predictions are consistent with data

Zeus - J/ ψ Electroproduction: p_T^2 and p_T^{*2}

Zeus - J/ ψ Electroproduction: rapidity

LZ (kt, CS) tends to be above the data in photon direction

HERA vs. Tevatron ME

- Only use theoretically safe regime: p_T^2 , $Q^2 > 4$ GeV², $M_X > 10$ GeV
 - Statistics limited in 1999
- Consistent description difficult
- Repeat including recent data?
- Common fit?

J.K.Mizukoshi, hep-ph/9911384

Upsilon Production : $\sigma(pA \rightarrow \Upsilon)$

Existing measurements by

E605, E771

contradictory

Width : in agreement with MC

Measurement of the Υ production cross section is feasible may help to distinguish between Fermilab fixed target measurements

Vaia Papadimitriou (Fermilab)

March 3, 2004

Prompt $\chi_{c1(2)}$ **production at BELLE**

$$e^+e^- \rightarrow \chi_{c1(2)} X$$

PRL 89 (2002)142001 EPS-ID 562

101.8 fb⁻¹

 $2.8 < M_{recoil}(J/\psi\gamma) < 3.8$

Search for η_b at CDF

Braaten, Fleming, Leibovich PRD 63 (2001) 094006 Expected production rate: $\sigma(\eta_b) \sim (3-6) \ge \sigma(\Upsilon(1S))$ B $(\eta_b \rightarrow J/\psi J/\psi) \sim 7 \ge 10^{-4\pm 1}$

 $\eta_b \rightarrow J/\psi J/\psi$ reconstruction

100 pb⁻¹ Possibly seen in Run I?

Small cluster: 7 events, 1.8 events expected from background

CDF mass resolution ~ 10 MeV/c² Search window 9.36 to 9.46 GeV/c² Simple mass fit: 9445 \pm 6(stat) MeV/c² Probability of background fluctuation: 1.5% (~2.2 σ)

Search for η_b at CDF

 $\eta_b \rightarrow J/\psi J/\psi$ reconstruction

Rate Limit:

 $\sigma\eta_b(|y| < 0.4) B(\eta_b \rightarrow J/\psi J/\psi) [B(J/\psi \rightarrow \mu\mu)]^2 < 18 \text{ pb}$

Central value 3.5 pb

Improves apparent significance Supportive of signal hypothesis Need more data for confirmation

Vaia Papadimitriou (Fermilab)