Heavy Flavor Production at the Tevatron

Les Rencontres de Physique de la Vallée d'Aoste 29th February – 6th March 2004, La Thuile Rick Jesik Imperial College London Representing the DØ and CDF collaborations

Hadroproduction of heavy quarks

NLO processes contribute with the same magnitude as LO ones
 Lead to different kinematic correlations

 - ΔR, Δφ, pT₁ vs. pT₂

b-quark cross sections at the Tevatron

Run 1 measured x-sections were a factor of two or three higher than the central values of the theory at the time.

Large uncertainties

Experimental uncertainties

- We don't measure b-quarks, only B-hadrons

- Fragmentation uncertainty Peterson is not correct
- B decay products often not fully reconstructed
 - Must extrapolate to B-hadron, then b-quark pT
- Theoretical uncertainties
 - hard scatter really needs NNLO scale factors (x2)
 - quark mass (10%), PDF's (20%)
 - kT effects and fragmentation

Correlations between the above often not included in theory vs. experiment comparisons
 – Was this merely a 2 σ discrepancy? – or more?

Improvements in theory

New LO and NLO B-meson fragmentation functions determined from recent data – Binnewies, Kniehl, Kramer Next to leading log resumation and re-tuned frag. functions: FONLL

– Cacciari, Nason

An exotic explanation

SUSY gluino production and decay to b-quarks – Berger, Tait, Wagner Also produce like sign BB hadrons and influence mixing measurements

The CDF Run II detector

The CDF detector has undergone extensive upgrades

- New silicon vertex detector
 - inner layer at 1.35 cm
- New central tracker
- Extended μ coverage
- Time of flight detector
- Second level impact parameter trigger
 - Allows all hadronic b triggers

The DØ Run II detector

The DØ detector has undergone very extensive upgrades

- Silicon vertex detector • $|\eta| < 3.0$
- Central fiber tracker
- 2 T solenoid magnet
- Low pT central muon trigger scintilators
- New forward µ system
- L2 silicon track trigger coming soon

Inclusive J/ ψ cross section

CDF's new muon trigger capabilities extend the J/ ψ p_T acceptance down to 0 – was 5 GeV in Run I.

Differential $B \rightarrow J/\psi$ cross section

30

 $\sigma(pp \rightarrow B, |y| < 0.6) * BR(B \rightarrow J/\psi) * BR(J/\psi \rightarrow \mu^{+}\mu^{-})$ = 24.5 ± 0.5(stat) ± 4.7(syst) nb

σ(pp→b, |y|<0.6) =18.0 ± 0.4 ± 3.8 μb

Comparison to theory

FONLL, a la Cacciari, Frixione, Mangano, Nason, Ridolfi

Impressive agreement with new data!

But...

the measured inclusive xsection is at the same level as the Run I exclusive one – it should be 10-15% higher, due to the increase in beam energy.

Charm production probes the same hard scatter processes as beauty, but has different fragmentation – good cross check of theory

Open charm cross sections

Same level of agreement or disagreement between data and theory (FONLL) as for beauty

D⁰ (pT≥5.5)	13.3±0.2±1.5 μb
D+ (pT≥6)	4.3±0.1±0.7 μb
D*+ (pT≥6)	5.2±0.1±0.8 μb
Ds+ (pT≥8)	0.75±0.05±0.22 μb

 $X(3872) \rightarrow J/\psi\pi^+\pi^-$

- Both CDF and DØ have confirmed BELLE's discovery of the X(3872)
- DØ results:
- -300 ± 61 candidates
- 4.4 σ effect
- $\begin{array}{c|c} & \Delta M = 0.768 \pm 0.004 \text{ (stat)} \\ \pm & 0.004 \text{ (sys) GeV/ } c^2 \end{array}$
- Direct (non-B) production
- See Vaia's charmonium review for CDF results

X(3872) production properties

$X(3872) - \psi(2S)$ comparison

Is the X charmonium, or an exotic meson molecule?
 No significant differences between ψ(2S) and X have been observed yet

Fully reconstructed B's

Better for cross section measurement – no missing decay product extrapolation uncertainties Also very nice for correlations – hadron vs. other lepton or jet, or even other hadron!

More fully reconstructed B's

- These states are not accessible at B-factories
 - mass and lifetime measurements (see Todd's talk)
 - CP violation in Bs, very small in SM good place to look for new physics
 - Bc hopefully coming soon

Large B semileptonic samples

Muon – D charge correlation already in these plots B_d mixing measurement based on these signals coming soon

Same side track flavor tag

Same side tags on 1k B \rightarrow J/ ψ K events (update with 4k events coming soon)

Flavor tagging

B⁻/B0B ,etc decay bbbar events on the transverse plane.

 $\operatorname{Jet} Q = \frac{\Sigma p_{\mathrm{T}}^{\mathrm{i}}.q^{\mathrm{i}}}{\Sigma p_{\mathrm{T}}^{\mathrm{i}}}$

Require |Q| > 0.2

Q of the highest pT (or lowest pTrel) track in a cone (dR < 0.7) around the B Muon charge

Q of the highest pT muon in the event separated in φ from the signal B by 2.2 rads.

Flavor Tagging

Method	Efficiency ε (%)	Dilution D (%)	Tag Power ε D ² (%)
Jet Charge	46.7±2.7	26.7±6.8	3.3±1.7
Same side track	79.2±2.1	26.4±4.8	5.5±2.0
Muon Tag	5.0±0.7	57.0±19.3	1.6±1.1

For hadronic final states we trigger on muon from other B – self tagging (ϵ =1) with even cleaner dilution $\epsilon D^2 \sim 80\%$

See Diego's talk for CDF flavor tag results

400

200

0

Bs mixing

Semileptonic decays

- Very good statistics
- Degraded proper time resolution
- If $\Delta m_s \sim 15 \text{ps}^{-1} \text{ expect a}$ measurement with 500 pb⁻¹

- Hadronic decays DØ too!
 - Poor statistics
 - Excelent proper time resolution
 - Need a few fb⁻¹ of data to reach $\Delta m_s \sim 18 ps^{-1}$

Conclusions

The Tevatron continues to be an excellent place to study heavy flavor production and properties

- Improvements in theory have reduced the discrepancy between measurements and predictions
 - Better treatments of fragmentation
 - FONLL
- Run II measurements starting to come in
 - $B \rightarrow J/\psi$ cross section
 - Open charm cross sections
 - X(3872) studies
- Exciting measurements to come
 - Exclusive hadron cross sections and correlations
 - Bs mixing, and so much more....