

Reactor Neutrino Oscillation Experiments: Results and Prospects for the Future

Karsten M. Heeger

Lawrence Berkeley National Laboratory

Recent Results in Neutrino Physics

Oscillation Parameters and Reactor Experiments

Search for Neutrino Oscillations with Reactor Neutrinos

KamLAND - Kamioka Liquid Scintillator Antineutrino Detector

Uses reactor neutrinos to study $\overline{\nu}$ oscillation with a baseline of L \sim 140-210 km

Coincidence Signal: $\overline{v_e} + p \rightarrow e^+ + n$ Prompt e^+ annihilationDelayedn capture, ~ 190 µs capture time

KamLAND studies the disappearance of $\overline{\nu_e}$ and

- measures
- interaction rate
- energy spectrum

 $\overline{\nu_e} + p \rightarrow e^+ + n$

Candidate Neutrino Event

Event Selection

Delayed Energy Window

Muon veto

Observed	54 events 162 ton•yr, <i>E_{prompt} > 2.6 MeV</i>	Excludes <u>physics background</u> from geo-v
Expected	86.8 ± 5.6 events	
Background accidental ⁹ Li/ ⁸ He fast neutron	1 ± 1 events 0.0086 ± 0.0005 0.94 ± 0.85 < 0.5	Measured: Δt_{pd} =0.02-20 s. Confirmed by τ within 3%. From observed n signal and known neutron production in

Note: error from background << total systematic error

KamLAND - Systematic Uncertainties

E > 2.6 MeV

	%	
Total liquid scintillator mass Fiducial mass ratio	2.1 4.1	• volume calibration
Energy threshold	2.1	 energy calibration or analysis w/out threshold
Tagging efficiency Live time	2.1 0.07	 detection efficiency
Reactor power Fuel composition	2.0 1.0	given by reactor company, difficult to improve on
\overline{v}_{e} spectra cross section	2.5 0.2	theoretical, model-dependent
Total uncertainty	6.4 %	

KamLAND Results in 2002/2003

First Direct Evidence for Reactor \overline{v}_{e} Disappearance PRL 90:021802, 2003

2-v oscillation: best-fit

No oscillation, flux suppression

Oscillation Parameters Before and After KamLAND

Karsten Heeger, LBNL

Determination of Oscillation Parameters Δm_{12}^2 , θ_{12}

LMA I only at > 99% CL

Continued Running

What's next for KamLAND?

KamLAND Off-Axis Calibration

What's next for KamLAND?

Continued Running

Enlarge Fiducial Volume In

Improve Calibration

Search for Spectral Distortions

Improve Δm^2 and θ_{12}

What's next for KamLAND?

Continued Running

Enlarge Fiducial Volume I

Improve Calibration

Search for Spectral Distortions

Improve Δm^2 and θ_{12}

Search for geo-, supernova, and relic-supernova anti-neutrinos. Nucleon decay studies. U/Th decays in the Earth produce radiogenic heat (40-60% of 40TW)

Raghavan et al. PRL 80 (1998)

A Background Challenge: ⁷Be Solar Neutrinos at KamLAND

- ${\mbox{ }}^{7}\mbox{Be }\nu_{e}$ measurement can improve solar models.
- Unlikely to improve on θ_{12}
- Checks oscillation prediction of $^7\text{Be}\ \nu_e$ flux.

Direct detection of solar ⁷Be neutrinos through elastic scattering → Singles signal

A Background Challenge: ⁷Be Solar Neutrinos at KamLAND

 $\ensuremath{^\circ}$ Backgrounds in the ^7Be signal region currently about 10^6 times too high

Working on purification methods to remove
 ⁸⁵Kr (from nitrogen used in purification)
 ²¹⁰Pb, ²¹⁰Pb (from decay of radon that got into the system)

$$U_{MNSP}$$
, θ_{13} , and $\mathcal{O}P$

U_{MNSP} Neutrino Mixing Matrix

Outstanding Questions

- I) What is size of $sin^2(2\theta_{13})$?
- II) What Is the mass hierarchy? Sign of Δm_{13}^2

III) Is there CP violation? Measure δ .

Amount of CP violation is given by $J_{lepton} \sim \underbrace{\cos^2(\theta_{13})}_{\sim 1} \underbrace{\sin(2\theta_{12})}_{\sim 0.9} \underbrace{\sin(2\theta_{23})}_{\sim 1} \sin(2\theta_{13}) \sin(\delta_{CP})$

Search for Subdominant Oscillation Effects

Oscillation Measurements Probe Fundamental Physics

Physics at high mass scales, physics of flavor, and unification:

- Why are the mixing angles *large, maximal, and small*?
- Is there CP violation, T violation, or CPT violation in the lepton sector?
- Is there a connection between the lepton and the baryon sector?

 θ_{13}

· Leptogenesis and the role of neutrinos in the early Universe

Measuring θ_{13}

Method 1: Accelerator Experiments $P_{\mu e} \approx \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 \frac{\Delta m_{31}^2 L}{4E_v} + \dots$

- appearance experiment $v_{\mu} \rightarrow v_{e}$ • measurement of $v_{\mu} \rightarrow v_{e}$ and $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ yields θ_{13}, δ_{CP}
 - baseline O(100 -1000 km), matter effects present

Method 2: Reactor Neutrino Oscillation Experiment

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E_v} + \left(\frac{\Delta m_{21}^2 L}{4E_v}\right) \cos^4 \theta_{13} \sin^2 2\theta_{13}$$

- disappearance experiment $\overline{v_e} \rightarrow \overline{v_x}$
- look for rate deviations from 1/r² and spectral distortions
- observation of oscillation signature with 2 or multiple detectors
- baseline O(1 km), no matter effects

Current Knowledge of θ_{13} from Reactors

Global Constraints on θ_{13}

Site Criteria

- powerful reactor
- overburden (> 300 mwe)
- underground tunnels or detector halls

→ Variable/flexible baseline for *optimization to* Δm^2_{atm} and *to demonstrate subdominant* oscillation effect.

 \rightarrow Optimization of experiment specific to site. Site selection critical

World of Proposed Reactor Neutrino Experiments

Overburden and Muon Flux

Chooz, France

'Double-Chooz' Project

10-20 tons detectors
8.4 GW_{th} reactor power
300 mwe overburden at far site
50 mwe overburden at near site

'Double-Chooz' Sensitivity

 $sin^2(2\theta_{13}) < 0.03$ at 90% CL

after 3 yrs, $\Delta m_{atm}^2 = 2 \times 10^{-3} \text{ eV}^2$

Power

11.6 GW_{th} (17.4 GW_{th} by 2010)

Overburden

Near 200-300 mwe Far >700 mwe

Daya Bay, China

Future Constraints on θ_{13}

Experiment	sin²(2θ ₁₃)	θ ₁₃	When?
CHOOZ	< 0.11	< 10	
NUMI Off- Axis (5 yr)	< 0.006-0.015	< 2.2	2012
JPARC-nu (5 yr)	< 0.006-0.015	< 2.2	2012
MINOS	< 0.07	< 7.1	2008
ICARUS (5 yr)	< 0.04	< 5.8	2011
OPERA (5 yr	< 0.06	< 7.1	2011
Angra dos Reis (Brazil)	< 0.02-0.03	< 5	?
Braidwood (US)	< 0.02-0.03	< 5	[2009]
Chooz-II (France)	< 0.03	< 5	[2009]
Daya Bay (China)	< 0.012	< 3	[2009]
Diablo Canyon (US)	< 0.01-0.02	< 2.9	[2009]
Krasnoyarsk (Russia)	< 0.016	< 3.6	?
Kashiwazaki (Japan)	< 0.026	< 4.6	[2008]

Karsten Heeger, LBNL

Upper limits correspond to 90% C.L.

Reactor & Long Baseline Experiments

Measuring $sin^2(2\theta_{13})$

3 σ Sensitivity to sin²(2 θ_{13})

Karsten Heeger, LBNL

Determining Mass Hierarchy

2 or Resolution of the Mass Hierarchy

Karsten Heeger, LBNL

Parameter Degeneracy

Reactor experiments help resolve the parameter degeneracy. Help with sin²2 θ_{23} ambiguity, especially if sin²2 $\theta_{23} \neq 1$

Sensitivity of $\sin^2 2\theta_{13} \sim 0.01$ has discovery potential and is interesting for future accelerator experiments and neutrino models.

Statistics and Systematics

Reactor Flux	 near/far ratio, choice of detector location 	σ_{flux} < 0.2%
Detector Efficiency	 near and far detector of same design calibrate <i>relative</i> detector efficiency 	$\sigma_{\rm rel eff} \leq 1\%$
Target Volume &	 no fiducial volume cut 	$\sigma_{target} \sim 0.3\%$
Backgrounds	 external active and passive shielding 	$\sigma_{ m acc} < 0.5\%$ $\sigma_{ m n\ bkgd} < 1\%$

Total Systematics $\sigma_{syst} \sim 1-1.5\%$

Goals of a Reactor Neutrino Oscillation Experiment

Neutrino Physics at Reactors

1956First observationof neutrinos1980s & 1990sReactor neutrino fluxmeasurements in U.S. and Europe

1995 Nobel Prize to Fred Reines at UC Irvine 2002 Discovery of massive neutrinos and oscillations

Past Experiments Hanford

Savannah River ILL, France Bugey, France Rovno, Russia Goesgen, Switzerland Krasnoyark, Russia Palo Verde Chooz, France Reactors in Japan

2004 and beyond Understanding the role of neutrinos in the universe

SEUM OF NATURAL HISTORY, TOHOKUUNIVERSITY

G.A.Horton-Smith, R.D. McKeown, J.Ritter, B.Tipton, P.Vogel California Institute of Technology

C.E.Lane, T.Miletic Drexel University

Y-F.Wang IHEP, Beijing

T.Taniguchi **KEK**

B.E.Berger, Y-D.Chan, M.P.Decowski, D.A.Dwyer, S.J.Freedman, Y.Fu, B.K.Fujikawa, K.M. Heeger, K.T.Lesko, K-B.Luk, H.Murayama, D.R.Nygren, C.E.Okada, A.W.Poon, H.M.Steiner, L.A.Winslow **LBNL/UC Berkeley**

S.Dazeley, S.Hatakeyama, R.C.Svoboda Louisiana State University

J.Detwiler, G.Gratta, N.Tolich, Y.Uchida Stanford University

K.Eguchi, S.Enomoto, K.Furuno, Y.Gando, J.Goldman, H.Ike K.Ikeda, K.Inoue, K.Ishihata, T.Iwamoto, T.Kawashima, Y.Kishimoto, M.Koga, Y.Koseki, T.Maeda, T.Mitsui, M.Motok K.Nakajima, H.Ogawa, K.Oki, K.Owada, I.Shimizu, J.Shirai, F.Suekane, A.Suzuki, K.Tada, O.Tajima, K.Tamae, H.Watan Tohoku University

KamLAND Collaboration

L.DeBraeckeleer, C.Gould, H.Karwowski, D.Markoff, J.Messimore, K.Nakamura, R.Rohm, W.Tornow, A.Young **TUNL**

J.Busenitz, Z.Djurcic, K.McKinny, D-M.Mei, A.Piepke, E.Yakushev **University of Alabama**

P.Gorham, J.Learned, J.Maricic, S.Matsuno, S.Pakvasa **University of Hawaii**

B.D.Dieterle University of New Mexico

M.Batygov, W.Bugg, H.Cohn, Y.Efremenko, Y.Kamyshkov, Y.Nakamura **University of Tennessee**