

Région Autonome Vallée d'Aoste Assessorat de l'Instruction Publique

"Heavy Ion Collider Physics" (from Ultra-Peripheral Collisions to Hard Probes) (~from very forward to y=0 @RHIC)

HI colliders are different from BEVALAC&AGS & SPS:

1) HI beams- a practical laboratory for γ-A Interactions

2) Hard probes, jets emerge above the "soft physics" backgrounds

Sebastian White

Heavy Ion stuff:

•Luminosity determination easier than p-p:+/-5% @RHIC -> $\sim 2\%$ @LHC •L $\sim 2*10^{26}$ (AuAu) vs $\sim 10^{32}$ (pp)

•L(b) vs. b known a priori

Event characterization with forward detectors($\eta > 3$)

AA cross-normalization with pp

- 1) From pp comparison data
 - Error from AA &pp Luminosity uncertainties and _{ncollision}
- 2) From central/peripheral
 - Error from determination of centrality classes

<- Klaus Reygers, PHENIX internal note 7/01

Total Inelastic Cross sections

Electromagnetic Interactions of Heavy Ions:

('24)-E.Fermi develops Equivalent γ approx for int of e^{-} and α 's with atoms

('33) -Weiszacker and Williams

(50's) demonstration of EPA with interactions of ~500 MeV e⁻ with Nuclei-(Wilson, Panofsky et al. @ Stanford)

(80-90's) -first measurement of EM interaction using ion beams @Bevalac SPS and AGS

('03->)- "rapidity gap" physics w. Heavy Ions @ RHIC & LHC

Electromagnetic Probes of Fundamental Physics

Series Editor: A. Zichichi

Editors: W. Marciano & S.White

World Scientific

Large Ultra-Peripheral Cross Section from Coulomb Interactions

Difference: calorimeter n-mult

	-		
Cross Section	Calculated Value(1)	Calculated Value(2)	Measured
σ_{tot}	$10.83\pm0.5\mathrm{Barns}$	11.19 \pm	N.A.
σ_{geom}	$7.09 \pm xx$	$7.29 \pm xx$	N.A.
$rac{\sigma_{geom}}{\sigma_{tot}}$	0.67	0.65	$0.661\ {\pm}0.014$
electromagnetic			
$\frac{\sigma(1n,Xn)}{\sigma_{tot}}$	0.125	xx	$0.117\pm0.003\pm\!0.002$
$\frac{\sigma(1n,1n)}{\sigma_{1n,Xn}}$	0.329	xx	$0.345 \pm 0.01 \pm 0.006$
$\frac{\sigma(2n,Xn)}{\sigma_{1n,Xn}}$	xx	0.327	$0.345 \pm 0.011 \pm 0.01$
	$\begin{array}{c} \text{Cross Section} \\ \sigma_{tot} \\ \sigma_{geom} \\ \frac{\sigma_{geom}}{\sigma_{tot}} \\ \text{electromagnetic} \\ \frac{\sigma(1n,Xn)}{\sigma_{tot}} \\ \frac{\sigma(1n,1n)}{\sigma_{1n,Xn}} \\ \frac{\sigma(2n,Xn)}{\sigma_{1n,Xn}} \end{array}$	$\begin{array}{c c} \text{Cross Section} & \text{Calculated Value(1)} \\ \hline \sigma_{tot} & 10.83 \pm 0.5 \text{Barns} \\ \hline \sigma_{geom} & 7.09 \pm xx \\ \hline \frac{\sigma_{geom}}{\sigma_{tot}} & 0.67 \\ \text{electromagnetic} \\ \hline \frac{\sigma(1n,Xn)}{\sigma_{tot}} & 0.125 \\ \frac{\sigma(1n,1n)}{\sigma_{1n,Xn}} & 0.329 \\ \frac{\sigma(2n,Xn)}{\sigma_{1n,Xn}} & xx \end{array}$	Cross SectionCalculated Value(1)Calculated Value(2) σ_{tot} 10.83 \pm 0.5Barns11.19 \pm σ_{geom} 7.09 \pm xx7.29 \pm xx $\frac{\sigma_{geom}}{\sigma_{tot}}$ 0.670.65electromagnetic $\frac{\sigma(1n,Xn)}{\sigma_{tot}}$ 0.125xx $\frac{\sigma(1n,Xn)}{\sigma_{1n,Xn}}$ 0.329xx $\frac{\sigma(2n,Xn)}{\sigma_{1n,Xn}}$ xx0.327

TABLE I. Cross sections calculated and derived from the data. The errors quoted on measure-

ments include the uncertainty of the BBC cross section [8]

"Quasi-real" γ spectra compared to an e-hadron collider (target frame)

->100 TeV @ LHC

Experimental Signature of UPC

- Two oppositely charged tracks with vertex
- Low total p_T •
- Back-to-back in transverse plane

STAR peripheral ρ production F.Meissner, LBNL

Coincident signals from nucl. Breakup in zero degree calorimeters (ZDC)

Au **Topology requirements in** central trigger barrel (CTB)

Au

π

π

Au

Au

The Four RHIC Experiments

"forward-edge" of charged multiplicity distribution relative to y_{beam}

Highlights from Run 1(&2): Multiplicity distributions (PHOBOS et al.) Extrapolation to LHC ~1/4 of "design" dN/dη

Comparison of $\langle N_{ch} \rangle$ vs. Energy

How to measure jets @ RHIC?

(similar to ISR-era with pp)

-focus on measurement of high-p₁hadrons

 \Rightarrow Dominated by fragmentation of hard-scattered partons.

-also angular / p_{\perp} correlations between hadrons

 \Rightarrow Indirectly sensitive to jet properties

 \Rightarrow And to di-jets

200 GeV jet overlay on central Pb-Pb event with ATLAS calorimter segmentation

PHENIX EMC

π^0 in p+p at $\sqrt{s} = 200 \text{ GeV}$

high $p_T \pi^0$ full energy Au+Au

Particle id w. PHENIX Pb/Sc EMCAL t.o.f.

RHIC Measurements at High p_T

- 0. Foreword: "high p_T " _ $p_T > 2.0 \text{ GeV/c}$ @ mid-rapidity (except y ≈ 2 BRAHMS π^-)
- 1. Unidentified charged-particles:
 - 130 GeV $(p_T^{max} \approx 5 \text{ GeV/c})$
 - 200 GeV $(p_T^{max} \approx 12 \text{ GeV/c})$
- 2. Identified baryons protons, lambdas:
 - 130 GeV ($p_T^{max} \approx 3.5 \text{ GeV/c}$)
 - 200 GeV $(p_T^{max} \approx 4 5 \text{ GeV/c})$
- 3. Identified mesons $-\pi^0$, π^{\pm} :
 - 130 GeV $(p_T^{max} \approx 4 \text{ GeV/c})$
 - 200 GeV ($p_T^{max} \approx 10$ GeV/c for Au+Au, 13 GeV/c for p+p)
- 4. Particles ratios:
 - 130 GeV ($p_T^{max} \approx 3.5 \text{ GeV/c}$)
 - 200 GeV $(p_T^{max} \approx 4 \text{ GeV/c})$
- 5. Two-particle correlations

π^0 yields measured in Au+Au collisions for all centralities

- "Invariant yields" vs. centrality
- Most central 0-10%

VS.

- Most peripheral 80-92%: like p+p collision
- also compare to pp (PHENIX data and SppS)

S. Mioduszewski, BNL (PHENIX)

If no nuclear enhancement/suppression expect:

 $\frac{\text{Yield}_{AA}}{\text{Yield}_{pp}} = \text{number of Nucleon - Nucleon binary collisions}$ $= \langle N_{\text{binary}} \rangle \quad \text{for the AA centrality class}$

• Define :

$$R_{AA}(p_{T}) = \frac{1/N_{events} d^{2}N^{AA}/dp_{T} d\eta}{\langle N_{binary} \rangle (d^{2}\sigma_{pp}/dp_{T} d\eta/\sigma^{pp}_{inelastic})} = \frac{Yield_{central}/\langle N_{binary} \rangle_{central}}{Yield_{pp}}$$

$$= \frac{Yield_{central}/\langle N_{binary} \rangle_{central}}{Yield_{peripheral}/\langle N_{binary} \rangle_{peripheral}}$$

Expectations in nuclear collisions

- In the absence of nuclear effects, these ratios are expected to be 1 at high p_T
- Departures from 1, measure nuclear effects Previously observed effects (at lower energies):
 - Shadowing
 - "Cronin effect" (p_T broadening)
 - Possible new effect:
 - Parton energy loss in dense medium

Nuclear Modification Factor

Theory Comparisons for R_{AA}

- ---- Wang dE/dx = 0
- --- dE/dx ≈ 0.25 GeV/fm (expanding)
 - dE/dxl_{eff} ≈ 7 GeV/fm (static source)
- X.N. Wang, Phys. Rev. C61, 064910 (2000).
- --- Levai $L/\lambda = 0$
- ---- $L/\lambda = 4$
- Gyulassy, Levai, Vitev: P.Levai, Nuclear Physics A698 (2002) 631.
- ---- Vitev $dN^g/dy = 900$
- GLV, Nucl. Phys. B 594, p. 371 (2001).

Central to Peripheral Ratio

• Suppression seen in 3 independent measurements

Sources of azimuthal correlations

- Au+Au
 - flow
- p+p and Au+Au collisions:
 - di-jets
 - combinatorial background
 - jets
 - resonances

 \rightarrow Subtracting the correlations for large $\Delta \eta$ from those for small $\Delta \eta$ leaves correlations only due to jets and/or resonances

Summary so far:

- Hadron spectra show suppression \sim 2-10 GeV/c
- Hadrons with $p_T > 4$ GeV have significant jet contributions

 \rightarrow Suppression is occurring in a region where hadrons have contributions from jet fragmentation

(Similar analysis by PHENIX experiment for leading photon, mostly from π^0 , with energy greater than 2.5 GeV/c supports this conclusion)

Peripheral Au+Au data vs. pp+flow

 $C_2(Au + Au) = C_2(p + p) + A^*(1 + 2v_2^2\cos(2\Delta\phi))$

Central Au+Au data vs. pp+flow $C_2(Au + Au) = C_2(p + p) + A * (1 + 2v_2^2 \cos(2\Delta\phi))$

More on this from RHIC soon.

- Inclusive spectra in d-A collisions
- Enhanced if source is parton energy loss(GLV et al)
- Suppressed if saturation of gluon pdf
- Inclusive spectra for p,pbar, hyperons
- Is there a suppression of heavy flavor spectra(c,b-jets)? PHENIX

Charmonia in pp data(Run II)

PHENIX preliminary

$\sigma(pp \rightarrow J/\psi + X) = 3.8 \pm 0.6(stat) \pm 1.3(sys) \,\mu b$

Région Autonome Vallée d'Aoste Assessorat de l'Instruction Publique

I already gave my perspective.

I think it will get better.