New $\psi(2s)$ Results from BES

Wenfeng Wang

Representing BES Collaboration Wangwf@mail.ihep.ac.cn

Institute of High Energy Physics Chinese Academy of Science

March 9-15,2003

Results and Perspectives in Particle Physics La Thuile, Aosta Valley, Italy

OUTLINE

Introduction
 BES & DATA taking
 New ψ(2S) Results
 ψ(2S) Scan
 ψ(2S) Hadronic Decays
 ψ(2S) Radiative Decays
 ψ(2S) Radiative Decays
 2002 ψ(2S) Run
 χ_c → Λ Λ -bar(preliminary)
 Summary

The Beijing Electron Positron Collider

 $L \sim -5 \times 10^{30}$ /cm²·s at J/ ψ peak $E_{cm} \sim 2-5$ GeV

A unique e^+e^- machine in the τ -charm energy region since 1989.

BESII Detector

Data Collected with BESI and BESII

Detector	$E_{CM}(\text{GeV})$	Physics	Data Sample
	3.097	J/ψ	7.8×10^{6}
	3.686	$\psi(2S)$	$3.96 imes 10^6$
BESI	4.03	D_S, D	$22.3 pb^{-1}$
	$3.55, m_{\tau} \text{ scan}$	$m_{ au}$	$5pb^{-1}$
	2-5 GeV R scan	R, α_{QED} , g-2	6+85 points
	$\psi(2S)$ scan	res. para.	24 points
BESII	3.097	J/ψ	58×10^{6}
	$\psi^{\prime\prime}$ scan	res. para.	$\sim 2.2 pb^{-1}$
	3.686	$\psi(2S)$	$\sim 14\times 10^6$

Purpose: Improve accuracies of $\psi(2S)$ parameters: Γ , Γ_{h} , Γ_{μ} , $\Gamma_{\pi\pi J/\psi}$, B(h), B(μ), and B($\pi^{+} \pi^{-} J/\psi$).

Group	уг	$\Gamma(\text{KeV})$	$\Gamma_h(\text{KeV})$	$B(\mu\mu)(10^{-3})$	$B(\pi^{+}\pi^{-}J/\psi)$ (%)
MARKI	75	228 ± 56	224 ± 56	9.3 ± 1.6	32 ± 4
SPEC	75			7.7 ± 1.7	
DASP	79	202 ± 57		9.9 ± 3.2	36 ± 6
E760	92	306 ± 39			
E760	97			8.3 ± 0.86	28.3 ± 2.9
E835	00			7.4 ± 0.53	
PDG	00	277 ± 31		10.3 ± 3.5	31.0 ± 2.8

 $\Psi(2S) \rightarrow \mu^+ \mu^-$ and $\Psi(2S) \rightarrow \pi^+ \pi^- J/\psi$ are important for identifying $\Psi(2S)$ decays in B-factory and other experiments.

Scanned 24 energy points between 3.67 and 3.71 GeV.

- Integrated luminosity = 1150 nb⁻¹
- Four channels: $\psi(2S) \rightarrow$ hadrons, $\mu^+ \mu^-$, $e^+ e^-$, and $\pi^+ \pi^- J/\psi$
 - For number of $\pi^+\pi^- J/\psi$, fit $\pi^+\pi^-$ recoil mass spectrum.

Fitting

- Fit observed $\sigma_h(W)$, $\sigma_{\pi\pi J/\psi}(W)$, $\sigma_e(W)$, and $\sigma_{\mu}(W)$.
- Include resonance and continuum production plus interference, beam spread (Δ), ISR and FSR.
- Assume $\Gamma_e = \Gamma_\mu = \Gamma_\tau / 0.3885$, $\Gamma_t = \Gamma_h + \Gamma_\mu + \Gamma_e + \Gamma_{\tau.}$
- Determine Γ_{h} , Γ_{μ} , $\Gamma_{\pi\pi J/\psi}$, $M(\psi(2S))$, Δ , and R.
- Results:
 - $R = 2.15 \pm 0.17$ consistent with BES R measurement ($R = 2.25 \pm 0.06$ at 3.55 GeV).
 - Δ = 1.298 ± 0.007. Agrees with expected beam spread.

Fitting Result

Parameter	BES	MARKI	PDG2002
Γ_t (keV)	264 ± 27(10.1 %)	$228 \pm 56 (24.6)$	$300 \pm 25 (8.3)$
Γ_h (keV)	258 ± 26(10.1 %)	$\frac{70}{224} \pm 56$ (25.0 %)	70)
$\Gamma_{\pi\pi J/\psi}$ (keV)	85.4 ± 8.7 (10.1		
Γ_{μ} (keV)	2.44 ± 0.21 (8.8 %)	2.1 ± 0.3 (14.29 %)	2.19 ±0.15 (6.8 %)
$\hat{\boldsymbol{B}}_{h}(\%)$	97.8 ± 0.15 (0.16 %)	98.1±0.3 (0.31 %)	98.10 ±0.30 (0.31 %)
$\frac{B_{\pi\pi J/\psi}(\%)}{B(\%)}$	$32.3 \pm 1.4 (4.4)$ %) $0.93 \pm 0.08 (8.5)$	32 ± 4 (12.5 %) 0.93	30.5 ± 1.6 (5.2%) 0.7 $\pm 0.09(12.9)$
$D_{\mu}(70)$	%)	±0.16(17.2 %)	%)

Discussion

* <u>Width variation</u> Γ_t (keV) :300 \longrightarrow 264.5(12%)

★ Improved precision
B_h (%) : 0.31 → 0.16
B_{ππ J/ψ} (%) : 5.2 → 4.4
B_μ (%) : 13 → 8.5

* First measurement of $\Gamma_{\pi\pi J/\psi}$

Phys. Lett. B550, 24 (2002)

$\psi(2S)$ Hadronic Decays

Expectations: T. Applequist and D. Politzer, Phys. Rev. Lett. **51**, 43 (1975).

$$\frac{\mathcal{B}[\psi(2S) \to X+Y]}{\mathcal{B}[J/\psi \to X+Y]} = \frac{\mathcal{B}[\psi(2S) \to \mu^+\mu^-]}{\mathcal{B}[J/\psi \to \mu^+\mu^-]} f(\alpha_s(s)) = (12.2 \pm 2.0)\%$$

Most of Channels follow the rule
VP states like *ρπ* and *K*K are* strongly suppressed. "*ρπ Puzzle*"

First seen by MarkII with suppression factor ~20.

BES finds suppression ~60.

BES also finds suppression in VT channels

Important to measure other channels

New channels with ω 's and ϕ 's

- $\psi' \to \omega \pi^+ \pi^- \to \pi^0 \pi^+ \pi^- \pi^+ \pi^-$
- $\psi' \rightarrow b_1^{\pm} \pi^{\mp} \rightarrow \omega \pi^+ \pi^- \rightarrow \pi^0 \pi^+ \pi^- \pi^+ \pi^-(*)$
- $\psi' \to \omega f_2(1270) \to \omega \pi^+ \pi^- \to \pi^0 \pi^+ \pi^- \pi^+ \pi^-(*)$
- $\bullet \ \psi' \to \omega K^+ K^- \to \pi^0 \pi^+ \pi^- K^+ K^-$
- $\psi' \to \omega p \bar{p} \to \pi^0 \pi^+ \pi^- p \bar{p}$
- $\bullet ~\psi' \to \phi \pi^+ \pi^- \to K^+ K^- \pi^+ \pi^-$
- $\psi' \rightarrow \phi f_0(980) \rightarrow \phi \pi^+\pi^- \rightarrow K^+K^-\pi^+\pi^-$
- $\bullet ~\psi' \to \phi K^+ K^- \to K^+ K^- K^+ K^-$
- $\bullet ~\psi' \to \phi p \bar{p} \to K^+ K^- p \bar{p}$

Using 4 M BESI sample.

Results

Channels	$B_{\psi(2S)}(imes 10^{-4})$	$B_{J/\psi}(imes 10^{-4})$	$Q_h = rac{B_{\psi(2S)}}{B_{J/\psi}} (\%)$
$\omega \pi^+ \pi^-$	$4.9\pm0.6\pm0.8$	72.0 ± 10.0	6.8 ± 1.7
$b_1^\pm\pi^\mp$	$3.3\pm0.6\pm0.5$	30.0 ± 5.0	11.0 ± 3.3
$\omega f_2(1270)$	$1.2\pm0.4\pm0.2$	43.0 ± 6.0	2.7 ± 1.1
$\omega K^+ K^-$	$1.5\pm0.3\pm0.2$	7.4 ± 2.4	20.1 ± 8.5
$\omega p ar p$	$0.8\pm0.3\pm0.1$	13.0 ± 2.5	6.0 ± 2.9
$\phi\pi\pi$	$1.5\pm0.2\pm0.2$	8.0 ± 1.2	19.1 ± 5.1
$\phi f_0(980)$	$1.1 \pm 0.4 \pm 0.2^{*}$	3.2 ± 0.9	33.7 ± 15.6
$\phi K^+ K^-$	$0.6\pm0.2\pm0.1$	8.3 ± 1.3	7.7 ± 2.5
$\phi p ar p$	$0.12 \pm 0.06 \pm 0.02$	0.45 ± 0.15	26.7 ± 16.2
	< 0.3		< 57.8

 $B(f_0(980) \to \pi^+\pi^-) = 0.52$

 $Q = B(\psi(2S) \to h)/B(J/\psi \to h)$

Accepted by Phys. Rev. D

- Radiative decays also expected to obey 12% Rule.
- Study $\psi(2s) \rightarrow \gamma \pi \pi$, γK K-bar, and $\gamma \eta \eta$.
- Charged modes:
 - 2 (4 for $K_S K_S$) oppositely charged tracks; $\geq 1 \gamma$.
 - Use PID and kinematic fit. Prob > 1%.
 - Separate $\pi^+ \pi^-$ and $K^+ K^-$ based on chisquare probability.
- Neutral modes:
 - \geq 5 γ . Prob > 1%.
 - use 6C kinematic fit on all combinations. Select best.
 - also require $|M_{\gamma\gamma} M_{\pi}| < 70 \text{ MeV}; |M_{\gamma\gamma} M_{\eta}| < 70 \text{ MeV}$

Using 4 M BESI sample.

mesons

 $f_2(1270)$ and $f_0(1710)$ in charged mode.

mesons

 χ_{c0} and $\chi_{c2} \rightarrow \pi^0 \pi^0$ and $\eta \eta$.

mesons

 $f_0(1710)$ and hint of $f'_2(1525)$ in charged mode.

mesons

Mode	$B(imes 10^{-4})$
$\psi(2S) \rightarrow \gamma f_2(1270) \text{ from } \gamma \pi^+ \pi^-$	$2.08 \pm 0.19 \pm 0.33$
$\psi(2S) \rightarrow \gamma f_2(1270) \text{ from } \gamma \pi^0 \pi^0$	$2.90 \pm 1.08 \pm 1.07$
$\psi(2S) \rightarrow \gamma f_2(1270)$ from $\gamma \pi \pi$	$2.12 \pm 0.19 \pm 0.32$
$\psi(2S) \to \gamma f_0(1710) \to \gamma \pi \pi \text{ from } \gamma \pi^+ \pi^-$	$0.301 \pm 0.041 \pm 0.124$
$\psi(2S) \rightarrow \gamma f_0(1710) \rightarrow \gamma K^+ K^-$	$0.302 \pm 0.045 \pm 0.066$
$\psi(2S) ightarrow \gamma f_0(1710) ightarrow \gamma K^0_S K^0_S$	$0.206 \pm 0.094 \pm 0.108$

Final state	$B(\psi(2S) ightarrow)(imes 10^{-4})$	$B(J/\psi ightarrow)(imes 10^{-4})$	$B(\psi(2S))/B(J/\psi)$
$\gamma f_2(1270)$	$2.12 \pm 0.19 \pm 0.32$	13.8 ± 1.4	$(15.4 \pm 3.1)\%$
$\gamma f_0(1710) \rightarrow \gamma K^+ K^-$	$0.302 \pm 0.045 \pm 0.066$	$4.25^{+0.60}_{-0.45}$ [8]	$(7.1^{+2.1}_{-2.0})\%$

Decays are consistent with 12% rule.

mesons

Mode	$B(imes 10^{-3})$	$B \times B(\psi(2S) \to \gamma \chi_{c0,2})(\times 10^{-4})$
$\chi_{c0} ightarrow \pi^0 \pi^0$	$2.79 \pm 0.32 \pm 0.57$	$2.42 \pm 0.28 \pm 0.44$
$\chi_{c2} ightarrow \pi^0 \pi^0$	$0.98 \pm 0.27 \pm 0.56$	$0.67 \pm 0.19 \pm 0.38$
$\chi_{c0} ightarrow \eta \eta$	$2.02 \pm 0.84 \pm 0.59$	$1.76 \pm 0.73 \pm 0.49$
$\chi_{c2} ightarrow \eta\eta$	< 1.37	< 0.93

Flavor SU(3) symmetry predicts branching fractions to $\pi^0 \pi^0$ and $\eta \eta$ should be same except for a phase space factor and a barrier factor $p^{(2s+1)}$.

Prediction:

 $B(\chi_{c0} \to \eta \eta)/B(\chi_{C0} \to \pi^{0}\pi^{0}) = 0.95$ Our measurement:

 $B(\chi_{c0} \to \eta \eta)/B(\chi_{c0} \to \pi^{0}\pi^{0}) = 0.73 \pm 0.30 \pm 0.25$

Accepted by Phys. Rev. D

Year 2002 ψ(2S) run

BES obtained 14 M $\psi(2S)$ events.

Now CLEOc will run at $\psi(2S)$.

14M ψ (2S) (preliminary)

Color octet mechanism (COM) important for P-wave quarkonium decays.

G. T. Bodwin *et al.*, Phys Rev. Lett. **D51**, 1125 (1995). H.-W. Huang and K.-T. Chao, Phys. Rev. **D54**, 6850 (1996). J. Bolz *et al.*, Phys. Lett. **B392**, 198 (1997).

- BES Γ (χ_{c0}) agrees with COM.
 Phys. Rev. Lett. 81, 3091 (1998).
- COM and a nucleon wave function give reasonable agreement with BES Γ ($\chi_{cJ} \rightarrow p p$ -bar) and other results.
- Generalizing to other baryons, the partial widths of other baryons can be predicted:

 Γ ($\chi_{cJ} \rightarrow \Lambda \Lambda$ -bar) ~ $\frac{1}{2}$ Γ ($\chi_{cJ} \rightarrow p p$ -bar) for χ_{c1} and χ_{c2} . S. M. Wong, Eur. Phys. J. **C14**, 643 (2000).

Here we study: $\psi(2s) \rightarrow \gamma \chi_{cJ} \rightarrow \gamma \Lambda \Lambda$ -bar $\rightarrow \gamma p \pi^{-} p$ -bar π^{+} .

- Select events with 4 charged tracks and $> 0 \gamma$'s.
- Use PID for charged tracks.
 Prob > 0.01
- 4C kinematic fit. Select smallest chi-square and require Prob > 0.01.

See clear Λ Λ -bar signal.

Select events around cluster.

See clear lambda peak in $m(\pi p)$.

 $m_{\Lambda} = (1114.3 \pm 0.5) \text{ MeV/c}^2.$

Agrees well with PDG .

3.6

3.7

Main physics backgrounds: 50 $\rightarrow \Lambda \Lambda$ -bar ψ(2s) 40 $\rightarrow \Sigma^0 \Sigma^0$ -bar Entries/20MeV/c² 30 Fit: 20 Monte Carlo background shape. • Background level floating. • 10 Fix χ_{cI} widths to PDG values. 5 Use Monte Carlo mass resolutions. 3.2 5 3.3 3.4 3.5 $\Lambda\bar{\Lambda}$ mass (GeV/c²) Fitted masses agree with PDG. 5

Results

For $N(\psi(2s))$ use $\psi(2s) \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow p$ p-bar. Many systematic errors cancel.

quantity	χ_{c0}	χ_{c1}	χ_{c2}	
n^{obs}	$15.2^{+4.2}_{-4.0}$	$9.0^{+3.5}_{-3.1}$	$8.3^{+3.7}_{-3.4}$	
ε (%)	6.07 ± 0.24	6.65 ± 0.25	6.09 ± 0.24	
$N_{\psi(2S)}(10^{6})$		14.9 ± 1.2		
$\mathcal{B}(\Lambda o \pi^- p)$		0.639 ± 0.005		
$\mathcal{B}(\psi(2S) \to \gamma \chi_{cJ}) \ (\%)$	8.7 ± 0.8	8.4 ± 0.7	6.8 ± 0.6	
$\mathcal{B}(\chi_{cJ} \to \Lambda \overline{\Lambda})(10^{-4})$	$4.7^{+1.3}_{-1.2}\pm1.0$	$2.6^{+1.0}_{-0.9}\pm0.6$	$3.3^{+1.5}_{-1.3}\pm0.7$	
$n^{obs}_{\pi^+\pi^-J/\psi}$		1826 ± 44		
$\varepsilon_{\pi^+\pi^- J/\psi}$ (%)		17.88 ± 0.12		
$\chi_{CJ} \rightarrow p p-bar)(10^{-4})$	2.2 ± 0.5	0.72 ± 0.1	3 0.74 ±0.10	
Preliminary!				

Summary

-Measured $\psi(2s)$ decay modes containing ω 's and ϕ 's and radiative decays to two pseudoscalar mesons.

These provide more information on 12 % Rule.

- Scan results improve on $\psi(2s)$ resonance parameters. First measurement of $\Gamma_{\pi\pi J/\psi}$.
- New preliminary results on $B(\chi_{c1} \rightarrow \Lambda \Lambda bar)$

New 14 M $\psi(2s)$ will provide many new results.

That's all! Thanks!