W mass at LEP and ElectroWeak fits

Andrea Venturi I NFN Pisa

On behalf of the LEP Collaborations: ALEPH. DELPHI, L3 and OPAL

Electroweak result combination: a VERY simplified description

Electroweak result combination (cont'd)

- Enough measurements to determine $m_{top},~M_w,~M_H~(\alpha_s)$ indirectly
- m_{top} and M_w direct and indirect measurements: comparable accuracy
- m_{top}: 5 GeV direct, 10 GeV indirect
- m_w: 34 MeV direct, 32 MeV indirect

- Therefore:
 - 1. Direct and indirect results comparison: EW rad corr test
 - 2. Direct measurements improve the (indirect) M_H determination

- Why W mass is one of the few inputs still "alive"
 - Combination of Tevatron and LEP
 - LEP results are still preliminary
 - Tevatron run2 + LHC

W mass measurement at LEP

WW boson pairs at LEP since 1996

- 161 209 GeV centre of mass energy
- ~700 pb⁻¹ by each experiments
- ~4500 qqqq , ~4000 lvqq events for each experiments.

W mass from direct reconstruction: qqqq and lvqq event

- jet and lepton 4-momenta reconstruction (tracks + calorimeters)
- Impose E,p conservation (+equal masses)
 - improved resolution: from 6-8 GeV to 2-4 GeV
 - reconstruction of v 4-momentum
 - \Rightarrow LEP energy has to be known accurately
- "solve" the 3-fold ambiguity of qqqq jet pairing

- Other W mass measurements
 - WW threshold cross section
 - W mass from fully leptonic WW events

W mass extraction

- Event observables:
 - reconstructed mass(es)
 - kinematic fit error
 - complete event likelihood function
- Masses have biases:
 - I SR, resolutions, particle losses, thresholds: ~300 MeV
- \Rightarrow MC is needed to correct for

\Rightarrow MC simulation affects W mass

- WW event kinematic (+I SR)
- jet fragmentation
- detector
- W width measurement
 - release the SM relation between M_W and Γ_W : 2 parameter fit

New ALEPH PRELIMINARY results

- ALEPH is working on the final W mass results (189 GeV last published result)
 - final version of analysis for all data set
 - homogenous MC production
- I mproving data /MC agreement (~10⁻⁴)
 - non-negligible shift observed
 - ⇒ New preliminary results released
- ALEPH "energy flow" reconstruction:
 - charged tracks ~60%
 - photons inside e.m. calorimeter (ECAL) clusters (~26%)
 - remaining energy in calorimeters: "neutral hadrons" or "residuals" (~14%, ~4% in ECAL only)
 - thanks to ECAL fine granularity
 - 1° x 1° projective towers segmented in 3 stacks longitudinally

Improved understanding of simulation

Known discrepancy

 the simulation "residuals" multiplicity, especially in ECAL only, has never been fully satisfactory

New findings

- small fraction of energy but causes instabilities in the W mass
- Jet masses are mainly affected

• Results of the comparison:

- likely multiplicity discrepancy because of e.m. shower satellites
 - Full EGS simulation not perfect yet
- \Rightarrow Possible solutions
 - Improve simulation
 - too late (?)
 - Reconstruction less sensitive to this effect

Investigation tool

- Modified e.m. showers simulation
 - ALEPH standard simulation: parametrization of the shower: good shower core description
 - Full EGS simulation: better simulation of shower fluctuations and shower satellites

- Event "cleaning"
 - Remove ECAL clusters fully contained one longitudinal segment only (single stack)
 - ~2% of the total energy
 - "cleaned cone" opening angle around th leptons (e and μ) increased from 2 degrees to 8 degrees

ECAL residuals multiplicity in Z events

W mass stability vs particle momentum threshold

New W mass results with the event cleaning

- W mass shifted by:
- ~-50 MeV 4q,
- ~ -85 MeV lvqq,
- ~-150 MeV evqq

- New ALEPH PRELIMINARY W mass results (183-208 GeV)
 - M_W(all)= 80.385±0.042(stat) ±0.041 (syst) GeV
 - M_w(lvqq)= 80.375±0.062 GeV
 - M_w(qqqq)= 80.431±0.117 GeV
 - LEP prescription used for FSI systematics
 - Detector simulation uncertainties
 - from 20 to 30 MeV (lvqq)
 - from 15 to 25 MeV (qqqq)
 - based on full EGS and std MC comparison

LEP W mass combination: the procedure

Inputs from experiments

- W mass from direct reconstruction
 - from qqqq and lvqq channels
 - for each year
- systematic uncertainties tables
- Systematic correlations
 - correlated systematics affect the final accuracy
 - FSI systematics affect the 4q result weight.
- Optimal combination
 - WW threshold measurements included

⇒ Contributions to the combined systematic and statistical uncertainties:

W mass systematic uncertainties: :LEP beam energy

• LEP energy in kinematic fit:

 $\Delta M_{\rm W}/M_{\rm W} \approx \Delta E_{\rm LEP}/E_{\rm LEP}$

 fully correlated between channels and experiments

Energy calibration

- Resonant depolarization up to 60 GeV
- Extrapolation to physics energies with magnetic field measurements (NMR)
- linearity checked with flux-loop measurements
 - uncertainty dominated by the spread between the two methods

 $\Rightarrow \Delta E_{\text{beam}} = 20-25 \text{ MeV} \Rightarrow \Delta M_{\text{W}} = 17 \text{ MeV}$

- Cross-checks and possible improvements
 - LEP spectrometer
 - beam energy from beam deflection
 - Synchrotron tune
 - beam energy from beam energy losses
- Final LEP energies and uncertainties will be ready soon

Fragmentation and Hadronization

MC models to generate hadrons

- particle spectra, angular distributions and contents (baryons) are affected
- Interplay with real detector
 - resolutions, thresholds
- \Rightarrow biases, non-linearities,...

How well they simulate the data

- JETSET used by all LEP experiments
 - internal MC parameters tuned with Z peak data by each experiments

- Systematic uncertainty on W mass
 - Changing the MC parameters
 - MC tuning statistical errors
 - Compare MC models
 - JETSET vs ARIADNE vs HERWIG
 - improve model tunings to reduce the W mass differences
- $\Rightarrow \Delta M_{W}$ =10-30 MeV \Rightarrow 18 MeV
 - correlated between channels and experiments

Work in progress

- real data vs MC comparison:
 - particle (baryons) rate reweighting
 - boosted Z events
 - event shape reweighting

- Detector simulation
 - detector response ⇒ biases and resolutions
 - \Rightarrow proper simulation
 - both for jet and leptons
 - see ALEPH new results
 - Z peak data to correct MC
 - Systematic uncertainties from:
 - correction statistical accuracies
 - MC with changes in the detector simulations
 - data vs MC comparison at Z peak

⇒ ΔM_W = 5-35 MeV ⇒ 14 MeV (Ivqq) ⇒ ΔM_W = 5-25 MeV ⇒ 10 MeV (qqqq)

uncorrelated between experiments

- QED corrections
 - I SR: boosted WW + kinematic fit
 ⇒ biases
 - uncertainties by comparing different computations
 - O(α) corrections: affect W mass distribution
 - uncertainty obtained by reweighting MC events with and without corrections (YFSWW)
 - cancellations occur
 - $\Rightarrow \Delta M_W < 10 \text{ MeV}$
 - correlated between experiments and channels
- Work in progress:
 - Comparison RacoonWW and YFSWW

Final State Interactions in qqqq channel

Hadronically decaying W pairs short living (~0.1 fm) ⇒their decay products can interact among each other

- Colour Reconnection (CR)
 - color singlets across W's
- Bose-Einstein correlation (BE)
 - coherently produced identical pions are closer in phase space (also from different W's?)

- We cannot ask ourselves which W a particle comes from
 - reconstructed W mass distribution is affected
 - not included in usual MC models
- ⇒ possible bias on the W mass measurement

- Relevant at the end of the hadronic shower (CR) or after the hadronization (BE)
 - full MC calculation is impossible
- \Rightarrow predictions rely on phenomenological MC models

$\ensuremath{\mathsf{M}_{\mathsf{W}}}\xspace$ biases and CR models

CR: Particle flow between W's

Particle Flow results and W mass CR systematic

BE correlation: dedicated analyses and W mass

• W mass uncertainty: full shift from the LUBOEI (JETSET) model:

 $\Rightarrow \Delta M_W = 35 \text{ MeV}$

correlated between experiments

Work in progress: reduce W mass sensitivity on CR

- CR is expected to affect mainly:
 - low momentum particles
 - particles away from the jet core
- Measure W mass removing:
 - or low momentum particles (pcut)
 - or far away particles (cone)
- Two-fold result:
 - new W mass estimator less sensitive to CR biases
 - the difference std W mass and (pcut/cone) W mass used to "measure" CR and constraint the MC models
 - it can be combined with Particle Flow

LEP W mass combined results

Combined LEP results (including threshold measurements) $M_W = 80.412 \pm 0.029(\text{stat}) \pm 0.031(\text{syst}) \text{ GeV}$ $\Gamma_W = 2.150 \pm 0.068(\text{stat}) \pm 0.060(\text{syst}) \text{ GeV}$

M_W(lvqq)=80.411±0.032(stat)±0.030(syst) GeV M_W(qqqq)=80.420±0.035(stat)±0.101(syst) GeV (18% correlation)

qqqq - lvqq mass difference (no FSI syst)
 ΔM_W(qqqq-lvqq)= +22±43 MeV

- Weight of qqqq channel: 9% (was 27% before summer 2002)
 - if no FSI: 21 MeV statistical error

 W mass result shifted by –35 MeV with respect to Summer 2002

non-4q

Winter 2003 - LEP Preliminary

Why W mass measurement at LEP is still PRELIMINARY

Because the LEP Collaborations say that "it is still preliminary" ...

- They are working for the final publications and already published can be changed
- OPAL results with year 2000 data have not been made public yet
- Because there are a lot of discussions and exchanges of ideas among the LEP Collaborations
- LEP W workshops
- Because of the present treatment of the final state interaction syst in 4q channel
 - data-driven evaluation which can improve in the future and increase the weight of the W mass from the fully hadronic channel
- Because "external" inputs can change
 - LEP energy calibration
 - Final state interaction MC models

Therefore LEP W mass results can/will change in the future: both central value and uncertainty.

ElectroWeak fit results

Andrea Venturi - W mass at LEP and EW fit - La Thuile 2003

Global fit

Combination of:

- Z-pole results (LEP + SLC)
- Direct M_W and m_{top} measurements
- NuTeV vN scattering
- APV

- χ^2 /ndof = 25.5/15 (4.4%)
 - largest contribution comes from NuTEV
 - χ^2 /ndof = 16.7/14 (27.3%) without NuTeV

	Measurement	Pull	(O ^{meas} –O ^{fit})/o ^{meas} -3 -2 -1 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	-0.16	
m _z [GeV]	91.1875 ± 0.0021	0.02	
Γ _Z [GeV]	$\bf 2.4952 \pm 0.0023$	-0.36	
σ ⁰ had [nb]	$\textbf{41.540} \pm \textbf{0.037}$	1.67	
R _I	$\textbf{20.767} \pm \textbf{0.025}$	1.01	
A ^{0,1}	0.01714 ± 0.00095	0.79	-
A _I (P _T)	$\textbf{0.1465} \pm \textbf{0.0032}$	-0.42	-
R _b	0.21644 ± 0.00065	0.99	_
R _c	0.1718 ± 0.0031	-0.15	•
A ^{0,b}	0.0995 ± 0.0017	-2.43	
A ^{0,c}	0.0713 ± 0.0036	-0.78	-
A _b	$\textbf{0.922} \pm \textbf{0.020}$	-0.64	-
A _c	$\textbf{0.670} \pm \textbf{0.026}$	0.07	
A _I (SLD)	0.1513 ± 0.0021	1.67	
$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.82	-
m _w [GeV]	80.426 ± 0.034	1.17	
Г _w [GeV]	$\textbf{2.139} \pm \textbf{0.069}$	0.67	-
m _t [GeV]	174.3 ± 5.1	0.05	
sin ² θ _w (vN)	$\textbf{0.2277} \pm \textbf{0.0016}$	2.94	
Q _w (Cs)	$\textbf{-72.83} \pm \textbf{0.49}$	0.12	
			-3-2-10123

Winter 2003

Indirect Higgs mass constraint

The combined fit allows an indirect determination of $\log(M_{Higgs})$

- $M_{Higgs} = 91^{+58}_{-37} \text{ GeV}$
- M_{Higgs} < 211 GeV at 95% CL
 - fit result is stable with or without NuTeV
 - Theory uncertainty included

Conclusions

An updated measurement of the W mass at LEP has been presented

- new/updated ALEPH preliminary results
- The LEP W mass result is still PRELIMINARY
 - LEP collaborations are still working on this measurement
 - part of the statistics has not been used yet
 - the statistical power of the 4q channel is very depressed by the FSI uncertainty
 - Activities to reduce the CR effects and to constraint the model predictions
- The ElectroWeak global fit is in good shape
 - the fit is robust