First Results from the KamLAND

Yoshi Uchida
Stanford University

Overview

- The Solar Neutrino Problem
- Neutrino Oscillations
- Reactor Neutrinos
- The KamLAND Experiment
- What it does
- How it works
- Its construction
- Data analysis and results
- Conclusions and Prospects

Solar Neutrino Experiments

Very briefly...

- Chlorine (Homestake ${ }^{\dagger}$ '68-'97)
- Chemical, v_{e} Total Rate only
- Gallium (SAGE '90-, Gallex/GNO '91-)
- Chemical, v_{e} Total Rate only, very low energy threshold
- Water (Kamiokande ${ }^{\ddagger}$ ' 88 - , SuperK '96-)
- Real-time ν_{e} Rate, Directionality
- Heavy Water (SNO '99 -)
- Real-time ν_{e}, ν_{X} Rate, Directionality, Distinguishes Neutrino Types
2002 Physics Nobel Prize Awarded to
Ray Davis ${ }^{\dagger}$ and Masatoshi Koshiba ${ }^{\ddagger}$

Solar Neutrino Experiments

Some examples of the reported results
Gallium detector
solar neutrino rate measurements

Kamiokande II

 rate higher for neutrinos arriving from direction of Sun

Solar Standard Model Predictions

The Solar Neutrino Problem

Total Rates: Standard Model vs. Experiment
Bahcall-Pinsonneault 98 (pre-SNO)

Yoshi.Uchida@stanford.edu
Les Rencontres de Physique de la Vallee d'Aoste - March 2003

The Solar Neutrino Problem

An energy-dependent Deficit of Observed Solar Neutrinos Compared to Expectations from SSM Theory Possible Explanations:
Expermental reasons
\rightarrow different methods, cross-checking
Thcomplete modelling of Sun
\rightarrow cross-checking, model-independent tests
"Non-standard" propagation of neutrinos
\rightarrow neutrino oscillations, neutrino decay, neutrino magnetic moments etc

Latest Solar Neutrino Results

SNO (Sudbury Neutrino Observatory) results released 2001, 2002

Total Rates: Standard Model vs. Experiment
Bahcall-Pinsonneault 2000

Yoshi.Uchida@stanford.edu
Les Rencontres de Physigue de la Vallee d'Aoste - March 2003

Overview

- The Solar Neutrino Problem
- Neutrino Oscillations
- Reactor Neutrinos
- The KamLAND Experiment
- What it does
- How it works
- Its construction
- Data analysis and results
- Conclusions and Prospects

Neutrino Mass \leftrightarrow Oscillations/Mixing

In Quantum Mechanics:
Neutrino creation/destruction: e, μ, τ eigenstates
Neutrino propagation: m_{1}, m_{2}, m_{3} mass eigenstates

If $m_{i} \neq m_{j}$, interference in propagation can occur, causing different mixtures of the e, μ, τ eigenstates before and after propagation, as a function of $\Delta n_{i j}{ }^{2}=m m_{i}^{2}-m m_{j}^{2}$
nb. Formally similar to $K^{0} \leftrightarrow \bar{K}^{0}$ oscillations
Yoshi.Uchida@stanford.edu
Les Rencontres de Physigue de la Vallee d'Aoste - March 2003

Neutrino Mixing in Vacuum and Matter

The two-generation mixing equation with commonly-used units inserted:

$$
\begin{aligned}
& P\left(v_{e} \rightarrow v_{e}\right)=1-\sin ^{2}\left(2 \theta_{12}\right) \times \\
& \sin ^{2}\left(1.27 \Delta m_{12}^{2}!e V^{2}\right) \frac{L}{E} \mathrm{~m} \\
&\mathrm{MeV})
\end{aligned}
$$

For reactor experiments including KamLAND, this vacuum approximation valid

In matter (electrons and nucleons), oscillations can be enhanced (MSW effect), modifying above equation

Overview

- The Solar Neutrino Problem
- Neutrino Oscillations
- Reactor Neutrinos
- The KamLAND Experiment
- What it does
- How it works
- Its construction
- Data analysis and results
- Conclusions and Prospects

Antineutrinos from Reactors

Nuclear reactors operate by causing controlled fission chain-reactions of heavy radioactive elements

The product isotopes are unstable and beta decay, producing antineutrinos $\left(N^{\prime} \rightarrow N^{\prime \prime}+e^{-}+\overline{v_{e}}\right)$

Antineutrinos from Reactors

Fuel composition evolution over time

Yoshi.Uchida@stanford.edu
Les Rencontres de Physique de la Vallee d'Aoste - March 2003

Reactor Antineutrino Oscillation Searches

\rightarrow Now give precise knowledge of antineutrino production

Reactor Antineutrino Oscillation Searches

Nuclear Reactors Around TheWorld

 1/5 of Worldwide Nuclear Power Generated in Japan

Yoshi.Uchida@stanford.edu
Les Rencontres de Physique de la Vallee d'Aoste - March 2003

Location - Kamioka, Japan

Former site of
Kamiokande detector,
1 km below surface in
Kamioka $\mathrm{Pb} / \mathrm{Zn}$ mine
(infrastructure and
support already in
place)

Yoshi.Uchida@stanford.edu
Les Rencontres de Physique de la Vallee d'Aoste - March 2003

Overview

- The Solar Neutrino Problem
- Neutrino Oscillations
- Reactor Neutrinos
- The KamLAND Experiment
- What it does
- How it works
- Its construction
- Data analysis and results
- Conclusions and Prospects

Oscillation Searches at KamLAND

$$
\begin{aligned}
& P: v_{e} \rightarrow v_{e}:=1-\sin ^{2}: 2 \theta_{12} \times \\
& \sin ^{2}: 1.27 \Delta m_{12}^{2}: \mathrm{eV}^{2}: \frac{180000 \mathrm{~m}}{E: \mathrm{MeV}}
\end{aligned}
$$

Probing the Solar Neutrino Problem with KamLAND

Reactor Flux \& Detector Size v. Baselines Experimental Sensitivity to Δn^{2}

$$
\begin{aligned}
& P: v_{e} \rightarrow v_{e}:=1-\sin ^{2}: 2 \theta_{12}: \times \\
& \sin ^{2}: 1.27 \Delta m_{12}^{2}: \mathrm{eV}^{2}: \frac{L: m}{4 \cdot 4: \mathrm{MeV}}
\end{aligned}
$$

Reactor Antineutrino Oscillation Searches

Reactor Antineutrino Oscillation Searches

The Kamioka Liquid Scintillator Anti-Neutrino Detector

Yoshi.Uchida@stanford.edu
Les Rencontres de Physigue de la Vallee d'Aoste - March 2003

Liquid Scintillator and Buffer Oil

LS Composition: 80% docecane 20\% pseudocumene $1.52 \mathrm{~g} /$ litre PPO
Buffer Oil: dodecane and isoparaffin mixed for density 0.04% lower than LS

- Purification by water extraction, nitrogen bubbling
\rightarrow PPO prepurification allowed very low backgrounds
- High transparency
- 300 photoelectrons in PMTs per MeV

Antineutrino Signature

Antineutrino interactions leave a distinctive 2-part signature

1. Prompt Part: positron with $E_{e^{+}} \approx E_{\bar{v}_{e}}-\left(M_{n}-M_{p}\right)-M_{e^{+}}$ \& two 511 keV photons
2. Delayed Part:
2.2 McV photon from neutron capture on p, capture $\tau \approx 210 \mu \mathrm{~s}$
Delayed-coincidence signature allows high-purity tagging of low-rate antineutrino signal (trigger rate: 30 Hz)

Antineutrino Signature

Antineutrino interactions leave a distinctive 2-part signature

1. Prompt Part: positron with $E_{e^{+}} \approx E_{\bar{v}_{e}}-\left(M_{n}-M_{p}\right)-M_{e^{+}}$ \& two 511 keV photons
2. Delayed Part: 2.2 MeV photon from neutron capture on p, capture $\tau \approx 210 \mu \mathrm{~s}$
Delayed-coincidence signature allows high-purity tagging of low-rate antineutrino signal (trigger rate: 30 Hz)

Antineutrino Signal Spectra

Expected spectra for Reactor and Geothermal antineutrino events

cf. Raghavan et al, Phys. Rev. Lett. 80, 635, (1998)
Yoshi.Uchida@stanford.edu
Les Rencontres de Physique de la Vallee d'Aoste - March 2003

KamLAND Fundamentals

- Location: Kamioka, Japan, under $\sim 1 \mathrm{~km}$ of rock
- $\sim 180 \mathrm{~km}$ average baseline from Japanese Nuclear Reactors (probing of MSW LMA solution to solar neutrino problem)
- ~ 1000 tonnes of Ultra-Pure Liquid Scintillator
- $\sim 2 \mathrm{~m}$ of inactive Buffer Oil
- 1,325 fast 17 -inch diameter PMTs
- 30 Hz average total trigger rate
- Muon rate in entire detector: 1 every 3 seconds
- Outer Detector Muon Veto (active water shield)
- Japan - United States
- People's Republic of China Collaboration

The KamLAND Collaboration

Research Center for Neut'mo Science. Tohoku Univer sity, Japan
K Eguchi, S. Enomoto, K. Furuno, J. Goldman, H. Hanada, H. Ikeda, K. Ikeda, K. Inoue, K. Ishihara, W. Itoh, T. Iwamoto, T. Kawaguchi, T. Kawashima, H. Kinoshita, Y. Kishimoto, M. Koga, Y. Koseli, T. Maeda, T. Mitsui, M. Motoli, K. Nakajima, M. Nakajima, T. Nakajima, H. Ogawa, K. Owada, T. Sakabe, I. Shimizu, J. Shirai, F. Suekane, A. Suzuli, K. Tada, O. Tajima, T. Takayama, K. Tamae, H. Watanabe

Department of Physics and Astronomy, Univer sity of Alabama, USA
J. Busenitz, Z. Djurcic, K. McKinny, D-M. Mei, A. Piepke, E. Yakushev Physics Department. University of California at Ber keley and Lavrence Berkeley National Laboratory, USA
B.E. Berger, Y. D. Chan, M.P. Decowski, D.A. Dwyer, S.J. Freedman, Y. Fu, B.K. Fujikawa, K.M. Heeger, K T. Lesko,
K.-B. Luk, H. Murayama, D.R. Nygren, C.E. Okada, A. W. P. Poon, H.M. Steiner, L.A. Winslow
W. K Kellogg Radiation Laboratory. California Institute of Technology, USA
G.A. Horton-Smith, R.D. McKeown, J. Ritter, B. Tipton, P. Vogel Physics Department. Drevel University. Philadelohia, USA
C.E. Lane, T. Miletic

Departnent of Physics and Astronomy. University of Haw aï at Manoa, USA P. W. Gorham, G. Guillian, J. G. Learned, J. Maricic, S. Matsuno, S. Pakvasa

Department of Physics and Astronomy: Lonisiana State University, USA
S. Dazeley, S. Hataleyama, M. Murakami, R.C. Svoboda

Physics Depar tment, Untiversity of Now Mexico, USA
B.D. Dieterle, M. DiMauro

Physics Department: Sianford University, USA
J. Detwiler, G. Gratta K. Ishii, N. Tolich, Y. Uchida

Department of Physics and Astronomy, Uitiversity of Tenne ssee, USA
M. Batygov, W. Bugg, H. Cohn, Y. Efremenko, Y. Kamyshkov, A Kozlov, Y. Nalkamura

Triangle Universifies Nuclear Laboratory, and Physics Departnents at Duke Universify. North Carolina State Universith, and the University of North Carolina at Chapel Hill. USA
L. De Braeckeleer, C.R. Gould, H.J. Kar wowski, D.M. Markoff, J.A. Messimore, K Nalkamura, R.M. Rohm, W. Tomow, A.R. Young

Institute of High Energy Physics, People's Republic of China
Y-F. Wang
Yoshi.Uchida@stanford.edu
Les Rencontres de Physique de la Vallee d'A Aoste - March 2003

```
KamLAND Timeline
Autumn 1998 Dismantling of Kamiokande
1999
Summer 2000
Winter 2000-01 Veto counter installation
Feb - Apr 2001 Balloon insertion, inflation and tests
Apr - May 2001 Plumbing for filling
Jun - Sep 2001 Filling with LS and Buffer
Aug - Sep 2001 Engineering runs with MACRO
electronics
Sep 2001 F.E. Electronics/Trigger/DAQ
    integration
end Sep 2001 First test data taking
Jan 22, 2002
6 Dec 2002 First Results Submitted to Phys. Rev. Lett.
Yoshi.Uchida@stanford.edu
Les Rencontres de Physique de la Vallee d'Aoste - March }200
```


Site Preparation / Tank Installation

 Dismantling Kamiokande

October 19%

Construction: PMT Installation

Yoshi.Uchida@stanford.edu
Les Rencontres de Physique de la Vallee d'Aoste - March 2003

Construction: PMT Installation

Balloon Development and Installation

Yoshi.Uchida@stanford.edu
Les Rencontres de Physigue de la Vallee d'Aoste - March 2003

Construction: Detector Filling

Construction: Balloon Filling

Construction: Balloon Filling

Front-End Electronics and PMT Waveforms

Data Acquisition

PMT Hit Information

The trigger uses "hit" information from the front-end electronics, which is simply the number of PMTs that have seen a pulse greater than $1 / 3$ of a single photoelectron

Coincidence, prescaled, \& trigger record threshold

Trigger looks every 25 ns over the previous 125 ns
Les Rencontres de Physique de la Vallee d'Aoste - March 2003

Event Reconstruction

Example event displays
Colour coded for photon arrival times

Events of interest have energies of several MeV PMTs see
≈ 300 photons $/ \mathrm{MeV}$

Photon arrival times used to determine vertex positions, and charges and distributions used to estimate event energies

Signal Cuts
 Spherical Fiducial Volume:
 Central Axis Cut:
 $$
\begin{aligned} & \mathrm{R}<5 \mathrm{~m} \\ & \rho>1.2 \mathrm{~m} \end{aligned}
$$

Time Correlation:
Vertex Correlation: Delayed Event Energy:

$$
\text { Total Signal Efficiency: } 78.3 \pm 1.6 \%
$$

Reconstruction Performance

$$
\begin{aligned}
& \text { Energy estimation } \\
& \text { linearity from } \\
& \text { radioactive source } \\
& \text { calibrations } \\
& \sigma=7.5 \% /: E(\mathrm{MeV}) \\
& \mathrm{R}=5.0 \mathrm{~m} \text { radius } \\
& \text { fiducial volume } \\
& \text { estimation from } \\
& \text { spallation neutron } \\
& \text { uniformity }
\end{aligned}
$$

Les Rencontres de Physique de la Vallee d'Aoste - March 2003

Muon
 Reconstruction

```
Muons saturate
detector, leave track as opposed to 'vertex'
\(\rightarrow\) Different reconstruction requirements from low energy vertex events
```

Reconstruction performance:

Sample Muon Event
 Colour coded for charges seen in PMTs

Spallation Cuts

Muons leave neutrons which can fake the signal

- Veto entire detector for 2 ms after all muons Muons can also leave longer lived ($100+\mathrm{msec}$) neutron emitters

Veto $\mathbf{3} \mathbf{m}$ cylinder around all muons for 2 seconds

- For high-energy
($>3 \mathrm{GeV}$) muons,
veto
entire detector
for 2 seconds
yellow: after muon 150usec~10msec red: apply dL $<=\mathbf{3 m}$ cut

Les Rencontres de Physigue de la Vallee d'Aoste - March 2003

Prompt/Delayed Event Energies

After fiducial, delayed - prompt $\{\Delta t, \Delta x\}$, \& spallation cuts:

Analysis Summary

- Fiducial volume estimation from data
- Number of target protons, exposure time
- Scintillator composition, density
- Spallation cuts
- Livetime
- Understanding of backgrounds (<1 event)
- Reactor fluxes

First results for 145.1 days of data (162 ton $\cdot \mathrm{yrs}$)

Systematic Uncertainties

Estimated Contributions to the Systematic Uncertainty (\%):

Total Scintillator Mass	2.13
Eiducial mass ratio	4.06
Energy threshold	2.13
Efficiency of cuts	2.06
Live time	0.07
Reactor power	2.05
Fuel composition	1.0
Time lag	0.28
Antineutrino spectra	2.48
$v_{e}-p$ cross section	0.2

Total systematic error $\quad 6.42 \%$

KamLAND should see

$$
\begin{gathered}
86.8 \pm 5.6 \\
(0.94 \pm 0.85 \text { background })
\end{gathered}
$$

events if all antineutrinos travel to KamLAND from reactors without loss

54 events observed

Measured Antineutrino Event Rate

Antineutrino Candidate Energy Spectrum

Two-Generation Oscillation Hypothesis

- 95\%

Confidence Level regions

> "Rate" $=$ number of events
"Shape" = energy spectrum

Comparison with Solar Results

Solar LMA:
Neutrinos with
Sun - Earth baseline
+ Matter Effects in Sun
KamLAND:
Antineutrinos with 180 km baseline + Vacuum Oscillations

Interpretation of Results

- For the first time probed the astrophysical "solar neutrino problem" with both detector and source in controlled, terrestrial environment
- First experiment to find disappearance of antineutrinos
- Excludes, in a single experiment, all solar neutrino oscillation solutions except MSW LMA, and most other non-standard mechanisms for the solar neutrino deficit*
- Proves that matter effects must be important inside the Sun*
- Probes CPT in conjunction with solar neutrino experiments

No On/Off Analysis at KamLAND

Time dependence of flux and Apr to Sep 2002

Our flux is a weighted sum of many commercial reactors: No chance of implementing on/off analysis Or is there?

Future On/Off Analysis at KamLAND

Issues at Japanese reactors: multiple simultaneous core shutdowns this spring \rightarrow Effective On/Off at KamLAND

Conclusions and Prospects

- Unique very long baseline reactor antineutrino experiment
- More statistics will pinpoint mixing parameters
- Expected 50\% reduction in reactor flux during 2003
- Precision "laboratory" study of neutrinos to improve understanding of astrophysical neutrino observations
- First experimental study of geoneutrinos
- Always on look-out for Supernovae
- Direct measurement of low energy solar neutrinos in possible future phase

