Prospects for Higgs Searches at DØ

Makoto Tomoto Fermi National Accelerator Laboratory (For the DØ Collaboration) La Thuile 2003, La Thuile, Italy

La Thuile, March, 15th, 2003

Outline

- Introduction
- DØ Run II
- Run II Data
 - -W+jets
 - -Z + jets
 - $-H \rightarrow WW$
- Summary

Introduction

Indirect limit of the global SM fit:

)3

m_H < 196 GeV at 95% C.L.

Fit minimum is at 85 GeV

- Major goal of the Tevatron Run II is the search for Higgs bosons.
 - Direct SM Higgs search at LEP: m_H> 114.4 GeV at 95% C.L. (hep-ex/0211058)
- (hep-ex/0212036) 6 CL theory uncertain LEP $\Delta \alpha$ 10 -0.02761+0.00036---- 0.02747±0.00012 10 ••••• Without NuTeV 4 Observed 10 ふ Expected for background 10 2 10 115.3 .4 10 Excluded Preliminary 100 102 104 106 108 110 112 114 116 118 120 100 **200 GeV** 400 20 $m_{\rm H}(GeV/c^2)$ m_н [GeV] Makoto Tomoto (FNAL)

Production Process & Decay Channel

- $gg \rightarrow H \dots \sigma(gg \rightarrow H) \sim 1 \text{ pb}$
 - For masses below ~140 GeV,
 - \succ Background hides H \rightarrow bb signals
 - For higher masses; m_H> 120GeV,
 - Combination with H → WW decay process can be useful
- HW, HZ ... σ(HW/HZ) ~ 0.1 pb
 Ceptonic decays of W/Z help
 - background rejection
- Hqq ... σ(Hqq) ~ 0.1 pb
 × Background too high
- Hbb ... σ (Hbb) ~ 5 fb
 - SM extensions may enhance φb/bb
 (φ =h,H,A)

Tevatron Higgs Working Group Study

- The Higgs discovery potential for the Tevatron RunII has been evaluated.
 hep-ph/0010338
- A joint effort of theorists and both experimental groups, CDF and DØ.
- Simulation performed using a parameterized fast detector simulation.
- Main conclusion :
 - Discovery at 3-5 σ can be made,
 - Combine all channels.
 - Combine the data from both experiments, CDF and DØ
 - Must improve understanding of signal and background processes and detector performance.
 - b-tagging, resolution of M_{bb}
 - Advanced analysis techniques are vital
 - Largest luminosity required to discover Higgs
- Results of studies with full simulations for selected signal process are consistent with SHWG expectations.

- Tevatron Run II in progress
 - Collider energy : $1.8 \text{ TeV} \rightarrow 1.96 \text{ TeV}$
 - \rightarrow Higgs production cross section increases by 20~30%
 - Target Luminosity : 6 ~ 11 fb⁻¹ or more
 - Peak luminosity now better than Run I : 3.7 x 10^{31} cm⁻¹ s⁻¹
- DØ upgraded for Run II
 - New tracking system fully working well.
 - \rightarrow Important for b-tagging
 - D0 recorded over 80 pb⁻¹ with full detector
 (Operating at >85% efficiency)
- Analysis in this talk based on 30~50 pb⁻¹ (Collected from August 2002 to January 2003)

Makoto Tomoto (FNAL)

- Study of the $W/Z(\rightarrow lepton) + jets$ production
 - First step towards W/Z (\rightarrow leptons) +H (\rightarrow bb) measurement
 - The W/Z + b-jets can be related to W/Z+ jets properties
 - Try to understand major background source from W/Z + di-jets
- Search for $H \rightarrow WW^{(*)}$ ($\rightarrow eevv/\mu\mu\nu\nu/e\mu\nu\nu$) decays
 - Lot of interesting physics in WW^(*) production
 - Important to keep an eye
- Others
- Search for $H \rightarrow \gamma \gamma$ decays
- WH($\rightarrow l^{\pm}\nu + bb$)
- $ZH(\rightarrow l^+l^- \text{ or } \nu\nu + bb)$
- $\phi b/bb$, $\phi \rightarrow bb/\tau\tau$ ($\phi = h$, H, A ; SUSY Higgs)

Object Identification

- W characteristics are represented by MC
- Clear mass peak of Z(ee) and $Z(\mu\mu)$

W/Z + jets production

- First step towards W/Z (\rightarrow leptons) +H (\rightarrow bb) measurement.
- W/Z + b-jets properties can be related to W/Z + jets properties.
 - Major background source to Higgs searches
- Analysis utilized 35 pb⁻¹
- Data samples triggered by lepton
 - No bias for jets distribution.
- Basic Selection:
 - Isolated lepton and large E_{T} (for W)
 - -2 high p_T leptons and m_{ll} consistent with m_z (for Z)
 - Plus jets

W+jets production (1)

Selection 300 $W(\rightarrow ev)$ 250 • Isolated $e: p_T > 20 \text{ GeV}$ 200 • $|\eta| < 0.8$ 150 • Missing $E_T > 25$ GeV 100 - W($\rightarrow \mu \nu$) 50 • Isolated $\mu : p_T > 25 \text{ GeV}$ • $|\eta| < 1.5$ 20 40 • missing $E_T > 20$ GeV 100 **Jets** 80 • $p_T > 20 \text{ GeV}$ • $|\eta| < 2.5$ 60 Compare PYTHIA MC with DATA⁴⁰ Normalized by area 20 Error includes stat. error and 20 dominant syst. error from JES

Makoto Tomoto (FNAL)

- Reconstructed di-jet mass and $\Delta R (= \sqrt{\Delta \phi^2 + \Delta \eta^2})$ between jets
 - MC reproduces jet distributions well
 - First step towards study of W(\rightarrow leptons)H(\rightarrow bb) decay process

W+jets production (3)

• Di-jet mass and ΔR_{ii} distribution for W($\rightarrow \mu \nu$) + jets event

Z+jets production (1)

• Selections

- 2 electrons from $Z(\rightarrow ee)$ 2 muons from $Z(\rightarrow \mu\mu)$
 - • $p_{\rm T} > 20 {\rm ~GeV}$
 - • $|\eta| < 2.3$

- Jets

- $\bullet p_T > 20 \text{ GeV}$
- • $|\eta| < 2.5$
- Compare PYTHIA MC with DATA
- Normalized by area
- Error includes stat. error and dominant syst. error from JES

- 2 muons from Z(→ μμ) •p_T > 15 GeV •|η| < 2

Combined Z(ee)+jets and Z($\mu\mu$)+jets

Z+jets production (2)

- Number of jets in Z + jets final states
- Reconstructed di-jet mass and $\Delta R (= \sqrt{\Delta \phi^2 + \Delta \eta^2})$ between jets
 - MC describes jet distributions well
 - First step towards $Z(\rightarrow leptons)H(\rightarrow bb)$ study

Makoto Tomoto (FNAL)

b-tagging (1)

- Next step in searches for Higgs would be b-jet identification
- Crucial to keep signal efficiency high and suppress non-b jets
- b-tagging efficiency determined by Impact Parameter (IP) resolution
- Measured IP resolution after 1st pass in SMT alignment

- b-tagging explores IP significance method
- Lepton from semileptonic decay of b is very useful
- Impact Parameter > 0
- \rightarrow track crosses jet axis after primary vertex

Makoto Tomoto (FNAL)

- Lot of interesting physics in WW production
 - SM Higgs at high mass region ($m_H \ge 120 \text{ GeV}$)
 - 4^{th} fermion family enhances SM Higgs cross section (factor ~8.5 for m_{H} =100 - 200 GeV)
 - Fermiophobic/Topcolor Higgs
 - (Br(H \rightarrow WW)>98% for m_H > 100 GeV)
 - Non Higgs-related ... Tri-linear couplings, New Phenomena
- Look at $ee/\mu\mu/e\mu$ plus missing E_T events
- Backgrounds include Z/γ^* , WW, t \overline{t} , W/Z+jets, QCD
- Cannot directly reconstruct mass
- Opening angle between leptons ($\Delta \Phi_{ll}$) is useful discriminating variable
 - Two leptons from Higgs tend to move in parallel (small $\Delta \Phi_{ll}$), due to spin correlations in H \rightarrow WW decay products
 - Leptons from Z/ γ^* , multijets are emitted back to back (large $\Delta \Phi_{ll}$)

$H \rightarrow WW^{(*)} \rightarrow e^+ e^- \nu \overline{\nu}$ final states

$H \rightarrow WW^{(*)} \rightarrow e\mu\nu\nu$ final states

	Expected background	DATA
Lepton ID, p _T >10, 20 GeV	$22 \pm 2.1 \pm 2.2$	22
$E_T > 20 \text{ GeV}$	$3.1\pm1.7\pm0.1$	4
$\Delta \phi(E_T, jets) > 0.5, E_T + p_T > 50 \text{ GeV}$	1.4 ±1.5 ±0.1	2
$\Delta \Phi_{e\mu} < 2.0$	$0.9\pm1.5\pm0.1$	1

- DØ is taking physics quality data.
- Background to Higgs production are under study.
 - -W+jets
 - -Z+jets
 - -WW
- More to come in the near future!!

