Electroweak and Top Physics at CDF in Run II XVII Rencontres de Physique de la Vallée d'Aoste March 12, 2003 Anyes Taffard **VERSITY of LIVERPOOL**

Electroweak Physics

♦ Cross section measurements
✓ W → Iv (e,µ,τ)
✓ Z⁰ → I⁺I⁻ (e,µ)

✤ Forward-Backward asymmetry: A_{FB}

♦ Diboson: $W^+W^- \rightarrow II_{VV}$

Standard Model consistency checks
✓ R = $\sigma(W \rightarrow Iv)/\sigma(Z^0 \rightarrow I^+I^-)$ (e, μ)
→ extract Γ(W)

 $\checkmark \sigma(W \rightarrow \tau v) / \sigma(W \rightarrow ev)$

► extract g_{τ}/g_{e}

Top Production & Decay

■ tau+jets (12/81)

■ jets (36/81)

Top Physics

 $\sigma_{t\bar{t}}$ measurement * ✓ Precision test of QCD ✓ Probe for physics beyond SM: ► Non-SM production: ♦X→tt $A \to II + jets + \not Z_T$ ► Non-SM decay: t→Xb

Channels: ✓ dilepton channel (lv lv bb) ► Good S/B≈7:1 ► Low statistics ► More difficult to measure M_{top} accurately I+jets channel (lv qq bb) ≻ Lower S/B \approx 1:6 for W+ \geq 3 jets ♦b-tagging improve S/B≈3:1 ► Higher statistics ► Essential for M_{top}(2 b-tags jets) Top mass?

 $\sigma_{t\bar{t}}$ in Dilepton Channel

 $\sigma_{t\bar{t}} = 13.2 \pm 5.9_{stat} \pm 1.5_{sys} \pm 0.8_{lum} \text{ pb}$ NLO @ $\sqrt{s}=1.96 \text{ TeV for } M_{top} = 175 \text{ GeV}^{\ddagger}: 6.70^{+0.71}_{-0.88} \text{ pb}$ $^{\ddagger} \text{MLM}$ XVII Rencontre de Physique de la Vallee d'A oste ANV6 latard UNIVERSITY of LIVERPOOL 15

Lepton+Jets Channel

Reduce background with b-tagging
 Secondary Vertex Tagging (SECVTX)
 Sonly 2% W+jets expected to have b quarks

Backgrounds

- ✓ W+jets $(g \rightarrow b\overline{b}, c\overline{c})$
- Mistags from light quarks and gluon jets
 W+charm
- ✓ Non W background (fake lepton),
- diboson, Drell-Yan, single top (small)

I+jets: Main Backgrounds

Mistags measured from data

Wbb & Wcc measured from MC ✓ Relies on simulation of heavy flavour content ✓ For now take bb & cc fraction in Wbb & Wcc from Run I

RunI & Run II fractions agree within uncertainties

✓ b-tagging efficiency from Run II corrected with SF

-			4

Njet	1	2	3	≥ 4
$-L_{xy}$	7.4 ± 0.77	2.9 ± 0.33	0.7 ± 0.1	0.25 ± 0.046
$W b \overline{b}$	6.3 ± 2.3	3.9 ± 1.3	0.8 ± 0.3	0.30 ± 0.11
$Wc\bar{c}$	2.3 ± 1.0	1.5 ± 0.7	0.2 ± 0.1	0.07 ± 0.03
Total	16.0 ± 3.4	8.4 ± 2.0	1.7 ± 0.4	0.6 ± 0.2

σ_{tt} Measurement: I +jets channel

Source	W+1jet	W+2jets	W+3jets	W+≥4jets
Background	33.8±5.0	16.4±2.4	2.88±0.05	0.87±0.2
SM Bkgnd + tt	34.0±5.0	18.65±2.4	7.35±1.4	7.62±2.0
Events before tagging	4913	768	99	26
Events after tagging	31	26	7	8

 $\sigma_{tt} = 5.3 \pm 1.9_{stat} \pm 0.8_{sys} \pm 0.3_{lum} \text{ pb}$ NLO @ $\sqrt{s}=1.96 \text{ TeV for } M_{top} = 175 \text{ GeV}^{\ddagger}: 6.70^{+0.71}_{-0.88} \text{ pb}$ XVII Rencontre de Physique de la Vallee d'A oste Anys Taffard UNIVERSITY of LIVERPOOL 21

Top mass

CDI

5 vertices:

20 constraints

Sample: I+jets

- ✓ 24 combinatorics
 - ➤ 12 correspond to the jet-parton match
- ► every combination has two solutions for p_z^v
 ✓ with 1 b-tagged jet goes down to 12
 ✓ with 2 b-tagged jets to 4
- ✓ Impose M_t=M_t, M(j,j)=M(l,ν)=M_W,
 > PDG: M_W, Γ_W, Γ_t
 ✓ 2-C fit applied, lower χ² is chosen for top mass

 Model the shape of reconstructed mass distribution for tt & background events

 Extract top quark mass using maximum Likelihood

XVII Rencontre de Physique de la Vallee d'A oste Anys Taffard UNIVERSITY of LIVERPOOL 22

b-jet

Run II Top Mass uncertainties

Run I uncertainty was 4.4 Need to understand CDF / calorimeter better.

Run II Systematic uncertainties on M_{top}

Source	Uncertainty (GeV/c ²)
Jet Energy Measurement	9.3
Initial and Final State Radiation	2.4
Background Shape	0.3
Parton Distribution Functions	1.8
Monte-Carlo Generators	1.8
Total	9.9

We know how to do it !

What about using b-tagging ?

