La Thuile Fri. Mar. 14, 2003

Jet studies at CDF in Run II

Rob Snihur

University College London

for the CDF collaboration

Outline Motivation 1. Inclusive jet cross section 2. Dijet mass 3. Jet shapes Summary

Motivation

- Tevatron = jet factory
- Probe highest energy scales
 - Higher \sqrt{s} + higher σ (factor 3 for E_{τ} > 500 GeV)
 - Already more jets than in Run I
- Test fixed-order QCD
 - look for deviations
 → new physics
- Constrain PDFs
- Analyses:
 - Inclusive jet cross section (counting jets)
 - Dijet Mass (bump hunting)
 - Jet Shapes & Energy Flow

Tevatron & CDF

Collider Detector at Fermilab (CDF)

- New plug calorimeter (1.1 < $|\eta|$ < 3.6)
- New tracking system
- Upgraded trigger

Highest Energy Jets in Run II

Inclusive Jet Cross Section

Repeat Run I analyses

with R = 0.7 (JetClu)

- **Event selection cuts** Use CDF cone jet algorithm
 - $|z_{vertex}| < 60 \text{ cm} \sum E_T < 1500 \text{ GeV}$ $-E_T^{\text{missing}} / \sqrt{\sum E_T} < 2 \text{ to } 7$

Apply jet energy corrections (same as in Run I)

Systematic Uncertainties

Corrected: Log

• Highest *E_T* jets ever!

CTEQ 6.1: hep-ph/0303013

Corrected: Linear

Good agreement (within uncertainties)

Run II & I

Many uncertainties cancel in the ratio

<u>Dijet Mass</u>

• 3 more bins at high dijet mass!

Run II& I

Limits

Differential jet shape definition

 $\sum_{r=0}^{R} \Delta r \cdot \rho(r) = 1$

Data & HERWIG

• Narrower jets at high E_T & low η

• *HERWIG* agrees well with data

Calorimeter vs. tracking

Energy flows

- Look outside the jet
- Probe the underlying event

Summary

- CDF has preliminary measurements in Run II
 - Inclusive jet cross section
 - Dijet mass
 - Jet shapes & energy flow
- Higher $\sqrt{s} \rightarrow$ more jets at high E_T
- Data samples w/ higher statistics than Run I
- Dominant systematic: jet *E*-scale
- General agreement w/ fixed-order QCD calculations & Monte Carlos

Outlook

- Reduced systematics
- More data
- Forward jets

- Different jet algorithms
- Other jet analyses
 - Dijet angular distribution - $\sigma(b$ -jet)

