

Searches for New Phenomena in CDF

Luca Scodellaro

 $Padova \ University \ \& \ INFN$ for the CDF Collaboration

XVII Rencontres de Physique de la Vallee d'Aoste March 9-15, 2003 LaThuile, Italy

Outline

Accelerator and Detector Upgrades

Model Based Searches

- \diamond New Gauge Bosons
- \diamond Extra Dimensions
- \diamond Leptoquarks
- \diamond Higgs
- \diamond Susy

Signature Based Searches

- \diamond CHAMPs
- \diamond Dijet Mass Bump
- \diamond Missing E_T
- \diamond Photons
- \diamond Tau Leptons

Accelerator Status $\diamond \sqrt{s} = 1.96 \ TeV$ $\diamond \mathcal{L} \sim 2 \div 3 \ \times 10^{31} \ cm^{-2}s^{-1}$ $\diamond \mathcal{L}^{int} = 180 \ pb^{-1}$

LPOI, Young-Kee Kim, The Tevaton's Run U

Detector Upgrades

- New plug calorimeter and tracking chamber to faster response
- \diamond New silicon detectors:
 - 3-D reconstruction
 - tracking extended to $|\eta| = 2$
- ♦ Time-Of-Flight (TOF System)
- \diamond Extended Muon coverage ($|\eta|=1.\rightarrow 1.5)$
- \diamond Renewed trigger and DAQ systems

Drell-Yan Dilepton Production

High Mass Dileptons allow to search for new particle production:

New Neutral Gauge Boson Z'

• SM coupling assumed;

Randall-Sundrum Graviton

- small extra-dimension solution to the hierarchy problem by means of a non-factorizable geometry;
- Excited graviton in 5 dimensions;
- Free parameters: mass M_G and coupling k/M_{PL} ;

LaThuile - March 9th-15th, 2003

Search for New Neutral Gauge Boson Z' in Dielectron Channel Selection

- Drell-Yan production $q\bar{q} \rightarrow Z' \rightarrow e^+e^-$;
- one good central electron $E_T > 25 \ GeV;$
- a second good central electron OR one good plug electron $E_T > 25 \ GeV;$

Limit

Luca Scodellaro for the CDF collaboration

LaThuile - March 9th-15th, 2003

Search for New Neutral Gauge Boson Z' in Dimuon Channel Selection

- two good muons $P_T > 20 \ GeV/c;$
- cosmic ray rejection by vertex, impact parameter and timing cuts;
- QCD rejection: $\Sigma_{cal.\ tow.}^{0.4} E_T < 0.1 \cdot P_T.$

Results $(72 \ pb^{-1})$

Limit

Results for Graviton Searches

Results for resonance searches in high mass dilepton used to set limits on Randall-Sundrum graviton too:

Leptoquark Searches in Run II

Leptoquarks generally pair produced and decaying to (lq)(lq), $(lq)(\nu q)$ or $(\nu q)(\nu q)$.

No generation mixing expected from FCNC constraints.

 $\beta(LQ->lq)$ model dependent.

- A search for first generation leptoquark has been performed in dielectron+jets channel Selection
- inclusive electron triggers used $(72 \ pb^{-1})$
- Two central electron w/ $E_T > 25 \ GeV$
- Two jets $(E_T^{j1} > 30 \ GeV, E_T^{j2} > 15 \ GeV)$
- events w/ 76 < M_{ee} < 110 GeV/c^2 removed for $Z \rightarrow e^+e^-$ rejection
- $E_T^{j1} + E_T^{j2} > 85 \ GeV$
- $E_T^{e1} + E_T^{e2} > 85 \ GeV$
- $\sqrt{((E_T^{j1} + E_T^{j2})^2 + (E_T^{e1} + E_T^{e2})^2)} > 200 \ GeV$
- 0 events observed

 $M_{LQ} < 230 \ GeV/c^2 \text{ excluded (95\% CL)}$

CHArged Massive Particles

Signature and Selection

• Long-lived particles escaping CDF detector \Rightarrow look at high- P_T muon triggers

• Isolated, slow moving $\Rightarrow \begin{cases} P_T > 40 \ GeV/c \text{ to have full tracking efficiency for} \\ 100 \ GeV/c^2 \ \text{CHAMPs} \\ \text{long time - of - flight through the detector} \end{cases}$

CHArged Massive Particles

Results Number of events • Maximize probability of discovery: 10² $TOF_{track} - t_0 > 2.5 \ ns;$ • Background predictions from tracks 10 with $20 < P_T < 40 \ GeV/c$; Exp. 2.9 ± 0.7 (stat) ± 3.1 (sys) events • 1 Observed 7 events 0.5 0 **CDF Run 2 Preliminary** $L dt = 53 \text{ pb}^{-1}$ Cross section (pb) 50 45 Production cross section (NLO) 40 ---- Cross section limit (Stop isolated) 35 30 25 20 15 10 5 0 120 80 90 100 110 130

Stop Mass (GeV/c²)

Limits $(53 \ pb^{-1})$

- stable stop model considered;
- NLO cross section $(\mu = M(t_1));$
- $m_{\tilde{t}} < 107 \ GeV/c^2$ excluded (95% CL);

Dijet Mass Bumps

Event Selection

- Inclusive jet samples $(75 \ pb^{-1})$
- Get two highest E_T jets w/ $|\eta| < 2 \& |tanh((\Delta \eta)/2)| < 2/3$
- No evidence for new particles

Search for New Particles Decaying to Dijets

95% CL excuded mass regions:

- Axigluon or Coloron: $200 < M < 1130 \ GeV/c^2$
- Excited Quarks: $200 < M < 760 \ GeV/c^2$
- E6 Diquark: $280 < M < 420 \ GeV/c^2$
- Color Octet Technirho: $260 < M < 640 \ GeV/c^2$
- Extra Gauge Boson W': $300 < M < 410 \ GeV/c^2$

Model

- Extra dimensions provide solution to the hierarchy problem;
- Graviton propagates in 4 + n dimensions;
- New effective Plank scale M_D : $M_{PL}^2 \sim R^n M_D^{2+n}$.

Signature and Selection

- Graviton emission: $q\bar{q} \rightarrow gG, qg \rightarrow qG, gg \rightarrow gG;$
- Additional jet $\Delta \phi(jet \not\!\!\!E_T) > 0.3$.
- Expected 274 ± 16 events (main from $Z \rightarrow \nu \bar{\nu}$)
- Observed 284 events.

$95\%~{ m CL}~{ m Limits}$	n=2	n = 4	n = 6
M_D	995~GeV	768~GeV	707~GeV

Luca Scodellaro for the CDF collaboration

Inclusive Missing E_T and Photon Searches in Run II

Several triggers implemented to study weakly interacting particle production...

- Met35+2jets
 - $\not\!\!\!E_T>35~GeV$ & 2 jets w/ $E_T>10~GeV$
- MET_BJET

- MET45
- Met_l3ps100
 - $E_T > 25 \ GeV \&$ prescale 100

...and new phenomena leading to photons in the final states

- INCLUSIVE PHOTON $E_T^{\gamma} > 25 \text{ or } 50 \text{ or } 70 \text{ } GeV$
- DIPHOTON $E_T^{\gamma} > 12 \text{ or } 18 \ GeV$
- TRIPHOTON $E_T^{\gamma} > 10 \ GeV$

- PHOTON+B JET $E_T^{\gamma} > 10 \ GeV \& \text{ disp. track } (|d_0| > 120 \ \mu m)$
- PHOTON+ MUON $E_T^{\gamma} > 16 \ GeV \ \& \ P_T^{\mu} > 4 \ GeV$
- PHOTON+ DIJET $E_T^{\gamma} > 18 \ GeV \ \& \ E_T^{jet1} > 18, \ E_T^{jet2} > 10 \ GeV$

Large samples are being collected and tested

Inclusive Diphoton Searches in Run II

Diphoton Mass

Preliminary, 84 pb

10

Sample Selection (84 pb^{-1})

Two central photon $E_T > 13 \ GeV;$

Tau Lepton Based Searches

Detection of τ leptons

• Large cross sections into final states with τ for SUSY Higgs production $(tan\beta >> 1)$

number of tracks

Improved τ detection and reconstruction also offers interesting perspectives for SUSY searches like for example:

- *R*-parity violating stop decays $p\bar{p} \to \tilde{t}\bar{t} + X \to (b\tau^+)(\bar{b}\tau^-) + X$.
- Chargino-Neutralino searches $p\bar{p} \to W^{\pm} \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to (\tau^{\pm} \nu \tilde{\chi}_1^0) (\tau^{\pm} \tau \mp \tilde{\chi}_1^0).$

Results for these analyses expected for APS

R-parity Violating Scalar Top Quarks (Run I Data)

Model

- *R*-parity conserving scalar top pair production;
- Stop decay via \mathbb{R}_P Yukawa interaction to τb ;
- Look for the signatures $\tilde{t}\bar{\tilde{t}} \to \tau^+ \tau^- b\bar{b} \to l\tau_h + \geq 2$ jets;

• Limit for $\beta(\tilde{t} \to b\tau) = 1;$

R-parity Violating Sneutrinos (Run I Data)

Model

- Single $\tilde{\nu}$ production from $d\bar{d}$ annihilation via \mathbb{R}_P Yukawa interaction;
- Decay via separate \mathbb{R}_P Yukawa interaction to opposite sign leptons;
- Look for the signatures $\tilde{\nu} \to e\mu, \ \tilde{\nu} \to \tau\mu \to e\mu\nu\nu, \ \tilde{\nu} \to \tau e \to e\mu\nu\nu;$

Selection

- $|z_{vertex}| < 60 \ cm;$
- $\geq 1 \mod \mu \le P_T > 15 \ GeV/c;$
- $\geq 1 \text{ good } e \text{ with } E_T > 20 \text{ } GeV;$
- opposite sign & $\Delta \phi(e,\mu) > 120^{o}$;
- for τ channels : $\Delta \phi(l, \tau) < 60^{\circ}$;

	$e\mu$	e au	μau
Data	19	4	12
Bkg.	20 ± 1	6.0 ± 0.5	9.6 ± 0.8

Search for Doubly-Charged Higgs

- Left-Right Symmetry breaking: $SU(2)_L \otimes SU(2)_L \otimes U(1)_{B_L} \to SU(2)_L \otimes U(1)_L$
- Higgs fields are a left-right doublet $\phi(1/2, 1/2, 0)$ and two triplets:

$$\Delta_{L,R} = \begin{pmatrix} \frac{1}{\sqrt{2}} H_{L,R}^{+} & H_{L,R}^{++} \\ H_{L,R}^{0} & \frac{-1}{\sqrt{2}} H_{L,R}^{+} \end{pmatrix}$$

- Light neutrino masses successfully predicted via see-saw mechanism!
- Supersymmetric models suggest low mass doubly charged Higgs

 H^{++} Properties and Selection

- Pair (Z exchange) or singly (WW fusion) produced in $p\bar{p}$ collisions
- Same-sign leptons decay mode providing strong experimental signature
- Inclusive electron trigger used $(91 \ pb^{-1})$
- Two central same-sign electrons required
- $M_H \pm 10\%$ dielectron mass windows explored

18

Conclusions

- CDF detector is collecting data from March 2001
- Run II searches for new phenomena have started
- First limits using dileptons and dijet mass spectra have been already set for various phenomena
- Specific theories beyond the Standard Model have been tested
- New Time-Of-Flight system has been exploited to search for CHAMPS
- Results are already improving Run I ones
- Larger samples are being collected and tested for searches based on τ lepton, Missing E_T and photon signature
- High integrated luminosity will provide the best opportunity for new physics discoveries until LHC starts to run.