

Thomas Schörner-Sadenius CERN / Hamburg University

17th Recontres de Physique de la Vallée d'Aoste (La Thuile) 9-15 March 2003

OVERVIEW

¶ LEP1 HEAVY FLAVOUR EW MEASUREMENTS

- Introduction and Status
- Experimental Techniques and Uncertainties
- Results and Standard Model Interpretation

¶ 2-FERMION PROCESSES @ LEP2

¶ SUMMARY

INTRODUCTION

LEP1 heavy flavour measurements →EW/new physics quantities

$$\Gamma_{\rm Q} \sim {\rm g_{AQ}}^2 + {\rm g_{VQ}}^2$$

 $A_{f} = 2 g_{V} g_{A} / (g_{A}^{2} + g_{V}^{2})$ $g_{V} / g_{A} \rightarrow \sin^{2} \theta_{eff}$

→ LEP: A_{FB}^{b,c} mainly sensitive to A_e:
→ SLD: e⁻ beam ~73% polarised → Ab

At LEP: Use Γ_{b} and A_{FB}^{b} $\rightarrow A_{b}$ and A_{e} separately!

HEAVY FLAVOUR E'WEAK: STATUS LEP1 heavy flavour measurements ~complete.

- ¶ Measurements completed.
 - ¶ multitag analyses using vertices, vertex mass, leptons etc.

¶ Summer 2002: New measurement from OPAL.

- ¶ Using jet/vertex/kaon charge
- ¶ New tools from B oscillations / CP violation / R_b analyses.
- ¶ Greatly reduced stat. and syst. errors.
- ¶ To come: New result from DELPHI

Summer 2002: New preliminary DELPHI A_{FB}^{b,c}
Update of older preliminary analysis with new systematics
To come: New result from OPAL

Final LEP1 + SLD HF EW results very close!

Independent hemisphere with various tag methods: ¶ flavour: lifetime/vertex, leptons, D* ... ¶ charge (for asymmetries): vertex, jet, kaon, lepton, D* ...

Wrong flavour backgrounds, hemisphere correlations, heavy quark fragmentation, semileptonic decay models.

HEAVY FLAVOUR TAGGING

Separate b and c events from uds background.

$\begin{array}{l} \textbf{A}_{FB} \stackrel{b,c}{:} \textbf{TAGGING THE OUARK FLAVOUR} \\ \text{Hadrons: } b,c \leftrightarrow \text{anti-b},c? \text{ Leptons: } b \rightarrow l \leftrightarrow c \rightarrow \leftrightarrow b \rightarrow c \rightarrow l \leftrightarrow BG \end{array}$

leptonic \leftrightarrow hadronic analyses. Statistical approach: Repeat analyses in many MC samples.

EXTRACTING $R_{b,c}$ AND $A_{FB}^{b,c}$ Challenge: Determination of sample purities, efficiencies etc. ¶ Complex multi- $N_t / 2N_{had} = R_b \cdot \varepsilon_b + R_c \cdot \varepsilon_c + (1 - R_b - R_c) \cdot \varepsilon_{uds}$ dimensional fits $N_{tt} / N_{had} = D_h \cdot R_h \cdot \varepsilon_h \cdot \varepsilon_h + D_c^{kl} \cdot R_c \cdot \varepsilon_c \cdot \varepsilon_c$ + $(1-R_{b}-R_{c})\cdot\varepsilon_{uds}\cdot\varepsilon_{uds}$ As much info as P possible from data $\langle Q_{F}-Q_{P}\rangle = \sum_{i} s_{i}\cdot\delta_{i}\cdotP_{i}\cdot C_{i}\cdot A_{FB}^{i}$ ¶ Performed in various tagging classes \rightarrow exploit all information entries 15000 (b) (a) Lepton analyses 10000 ¶ Wrong-sign leptons: B⁰ mixing or $b \rightarrow c \rightarrow l$ decays 5000 FPH DATA ¶ Improve precision by Simulation extracting A_{FB}^{b} and A_{FB}^{c} . $h \rightarrow 1$ 0 0.5 -0.5 0.5 -0.5 0 -1 0 -1

La Thuile, March 2003

 $\cos\theta$

Schörner-Sadenius: LEP1 HF/EW + 2f@LEP2

cosθ

HEMISPHERE CORRELATIONS

For flavour and charge tags \rightarrow large uncertainty.

¶ Measurements of flavour and charge tags correlated between both hemispheres

- -Tag efficiency is function of θ \rightarrow geometrical correlations
- gluon radiation + soft particles \rightarrow kinematical correlations

¶ For R_h dominant error; in A_{FB}^b measurements large charge tag correlation due to gluon radiation. ¶ Geometrical correlation can be taken from data; for A_{FB}^{b} kinematical correlation small \rightarrow take from MC.

OPAL A_{FB}^{b} at peak energy: 0.00089 (of 0.00179).

HEAVY FLAVOUR EW FITS

Combine all knowledge, taking correlations into account.

Derive best HF EW parameters from all measurements (LEP1 and SLD), taking full correlation into account: Inter-dependence ($R_b = R_b(\langle R_c \rangle)$), common syst. (QCD corrections), specific syst. and external inputs

Simultaneous fit to 'all' EW observables and of - Charm hadron production fractions (D, D_s, baryons) - leptonic BRs $b \rightarrow l$, $b \rightarrow c \rightarrow l$, $c \rightarrow l$, mixing χ .

Perform separate fits to LEP $A_{FB}^{b,c}$ and SLD $A^{b,c}$. - For LEP at different energy points \rightarrow change of A_{FB} .

Final χ^2 rather small: 48/(105-14). mainly from large correlated systematics.

RESULTS: R_b and R_c R_b measurement in good agreement with Tevatron top mass.

No news since quite some time.

 $\Gamma_{\rm b}/\Gamma_{\rm bad}$ for $\Gamma_{\rm c}/\Gamma_{\rm bad} = 0.172$

RESULTS: ASYMMETRIES vs. ENERGY Influences Z/y contributions and interference between them.

RESULTS: b ASYMMETRIES AT Z

RESULTS: c ASYMMETRIES AT Z

STANDARD MODEL INTERPRETATION

OVERVIEW

¶ HEAVY FLAVOUR E'WEAK MEASUREMENTS

¶ 2-FERMION PROCESSES @ LEP2

- Issues in LEP2 ee→ff
- Measurements
- Interpretation in Terms of New Physics

¶ SUMMARY

ISSUES IN ee \rightarrow ff @ LEP2 Different to LEP1: Now assume Z, γ and look for new physics.

LEP2 RUNNING

Overview on Luminosities and Centre-of-Mass Energies.

CROSS-SECTIONS FOR qq, μμ, ττ

La Thuile, March 2003

DIFFERENTIAL CROSS-SECTIONS Special case for $ee \rightarrow ee$.

General

- First and last bin correlated
- (forward charge determination)
- Bin-to-bin correlations?

Additional process: electron scattering

• Diverges for $\cos\theta=1$

→ maximal asymmetry (log scale!)

Good description by ZFITTER prediction

• total $\chi^2 = 200/160$

• 202 GeV: lowest bin high (μ and τ), but low statistics

HEAVY FLAVOURS AT LEP2 I1 Forward-backward asymmetries $A_{FB}^{b(c)}$.

CONTACT INTERACTIONS I

• Fit for $\varepsilon = 1/\Lambda^2$ (0 for no CI) • Convert ε in limit on Λ . $\Lambda > 2.1 - 21.7 \text{ GeV}$

 $e^+e^- \rightarrow l^+l^-$

25 TeV

Schörner-Sadenius: LEP1 HF/EW + 2f@LEP2

LOW SCALE GRAVITY

Large extra dimensions possible solution to hierarchy problem \rightarrow connect m_{EW} (1 TeV) and M_{Pl}.(10¹⁵ TeV).

SUMMARY

- Heavy flavour EW physics results from LEP1/ SLD slowly coming to an end.
- OPAL leptons and DELPHI jet charge A_{FB} to come. Some analyses still preliminary.

- EW results on asymmetries / $sin^2\theta_{eff}$ interesting:
 - 2.9σ discrepancy between leptonic and hadronic measurements. Statistical?
 - New physics? Modification of b vertex? New gauge bosons?

- Aim: Find interferences with γ/Z from new physics and place limits.
- All cross-sections and asymmetries well described (largest deviation: R_b with 2.08σ.
- No evidence for new physics. Limits > 1 TeV.

BACK-UP MATERIAL

CONTACT INTERACTIONS II

Schörner-Sadenius: LEP1 HF/EW + 2f@LEP2

LEPTOQUARKS

Mediate quark-lepton transitions \rightarrow modification of hadronic σ , A_{FB}.

Leptoquarks

- Classified by (iso)spin: S_I, V_I.
- Carry fermion number F=L+3B and preserve L and B.

Analysis

3rd generation results:

- for various LQs.
- line: e coupling g~ $\sqrt{4\pi\alpha_{\text{EM}}}$

La Thuile, March 2003

Schörner-Sadenius: LEP1 HF/EW + 2f@LEP2