COMPASS: Status and Perspectives

Jörg PRETZ on behalf of the COMPASS collaboration

La Thuile, March 2003

Physikalisches Institut, Universität Bonn

J. Pretz, La Thuile, March 2003 – p.1/20

COmmon Muon and Proton Apparatus for Structure and Spectroscopy \approx 200 physicists \approx 35 institutes, at CERN SPS μ beam

<u>Structure</u> (with μ beam)

- $\Delta G(x)$
- $\Delta q(x)$
- $\Delta_T q(x)$

Spectroscopy (with hadron beam)

• π and K polarizability

- Glue Balls,Hybrid Mesons
- doubled charmed baryons

• • • • •

Where does the Nucleon Spin come from?

Where does the Nucleon Spin come from?

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

$$\begin{split} \Delta \Sigma &= \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s} \\ \Delta u &= u^{\uparrow} - u^{\downarrow}, \Delta G = G^{\uparrow} - G^{\downarrow} \end{split}$$

 $L_q(L_G)$: orbital angular momentum of quarks (gluons)

Where does the Nucleon Spin come from?

$\Delta_T q$: net number of quarks, q, carrying spin parallel to transverse polarized nucleon.

The Nucleon Spin Puzzle

Static Quark Model:

Weak Baryon decays:

$$\Delta \Sigma = 1$$

$$\Delta \Sigma = 0.58 \pm 0.03$$

(Assumption $\Delta s = 0$)
$$\Delta \Sigma = 0.24 \pm 0.03$$

DIS :

 $\Delta s = -0.11 \pm 0.01$

But axial anomaly makes interpretation of $\Delta \Sigma$ difficult:

J. Pretz, La Thuile, March 2003 – p.5/20

How to measure ΔG ?

Use hadronic final state in DIS to tag gluon! $\mu + N \rightarrow \mu' + \mathrm{hadrons} + X$

Two complementary methods:

- Open charm production $D^0 = (c\bar{u}) \rightarrow K^- + \pi^+ (4\%)$
- High p_T hadron production

0 0 0 0 0 0

 $\pi^+ \operatorname{tag} u, \overline{d} \operatorname{-quark} \to \Delta u \& \Delta \overline{d}$ $\pi^- \operatorname{tag} \overline{u}, d \operatorname{-quark} \to \Delta \overline{u} \& \Delta d$ $K^+, K^-, K_s \text{ to tag } s \operatorname{-quark!} \to \Delta s$

How to measure ΔG ?

 $\frac{\text{Double Spin Asymmetry }(A_{LL}):}{A^{\gamma N \to c\bar{c}} = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} = \langle a^{PGF} \rangle \langle \frac{\Delta G}{G} \rangle}{A^{\gamma N \to} \text{hadrons}} \propto \frac{\Delta q}{q}$

 $\frac{\text{Single Spin Asymmetry } (A_{UT})}{N^{\pi}(\Phi_{\pi} + \Phi_{S}) \propto \sin(\Phi_{\pi} + \Phi_{S}) \Delta_{T} q}$

For ΔG measurement: Exploit full kinematic range down to $Q^2 = 0$ (i.e. $\theta_{\mu} = 0$). Scale = $(2m_c)^2$ allows interpretation pQCD even at low Q^2 .

0 0 0 0 0 0 0

Expected precision on ΔG

Statistical accuracy for 1 year of running

(1 year \doteq 150 days, 25% eff. SPS + spectrometer)

Requirements

- Polarized, high energy (100-200 GeV) lepton beam \rightarrow CERN muon beam
- Polarized Target
- Spectrometer
 - large acceptance (down to $\theta_{\mu} = 0$)
 - Particle ID

0 0 0 0

The COMPASS Spectrometer

Target

- solid sate target • ⁶LiD, Pol = 0.5, f=0.5 NH_3 , Pol = 0.85, f=0.18
- two cells oppositely polarized
- Solenoid (B=2.5 T)
- Dipole (B=0.5 T)
- ³He-⁴He cryostat $(T_{min} = 50 \text{ mK})$
- Dynamic Nuclear **P**olarisation

pol. measurement with 10 NMR coils (σ_P/P = 0.03)

Target Polarization

•

J. Pretz, La Thuile, March 2003 - p.12/20

•

Data Taking 2002

- fisrt physics run in 2002
- 76 days of data taking
- 5×10^9 events on tape $\hat{=}$ 300 TByte
 - 80% in longitudinal target polarization $\rightarrow \Delta G$, $\Delta q, q = u, d, s, \bar{u}, \bar{d}, \bar{s}$
 - 20% in transverse target polarization $\rightarrow \Delta_T q$

0 0 0 0

Vertex Reconstruction

RICH

- radiator gas: C₄F₁₀
 (80 m³)
- 116 mirrors
- MWPC with Csl cathodes
- π/K/p separation up to
 50 GeV

• • • • •

RICH Rings

•	

•

J. Pretz, La Thuile, March 2003 - p.16/20

• •

RICH at work

RICH at work

J. Pretz, La Thuile, March 2003 - p.17/20

RICH at work

Estimates based on 2002 data

• Δs :

Projection of statistical errors

• ΔG : no estimate yet

J. Pretz, La Thuile, March 2003 - p.18/20

The Future

- Production of all 2002 data $\rightarrow D^0$ signal $\rightarrow \Delta G$
- 2003 run starts in May
- Another μ run 2004
- Run with hadron beam for 4 weeks in 2003 or 2004
- Projects to continue run after SPS shutdown in 2005

• •

- VSAT
 - Scintillating Fibers
 - Silicon

• • • • •

- VSAT
 - Scintillating Fibers
 - Silicon
- SAT
 - GEM
 - MICRO MEGAS

• • • • •

- VSAT
 - Scintillating Fibers
 - Silicon
- SAT
 - GEM
 - MICRO MEGAS
- LAT
 - MWPC
 - Drift chambers
 - Straws

• • • •

- VSAT
 - Scintillating Fibers
 - Silicon
- SAT
 - GEM
 - MICRO MEGAS
- LAT
 - MWPC
 - Drift chambers
 - Straws

- particle id.
 - RICH

- ECAL/HCAL
- μ identification

• • • •