Recent results from KLOE

Luca Passalacqua (LNF – INFN) on behalf of the KLOE Collaboration

KLOE Physics Program

KAON physicsCP violation studies• double ratio• interferenceCPT violation studies• Semileptonic Asymmetries $K_{s,L} \rightarrow \pi^+ e^- \nu / \pi^- e^+ \nu$ • interference V_{us} , K form factors $K_{L} \rightarrow \pi^{\pm} \ell^{\mp} \nu, \ K^{\pm} \rightarrow \pi^o \ \ell^{\pm} \nu$ Rare $K_{s,L}$ decays

Non-KAON physics Radiative ϕ decays $\phi \rightarrow f_o(980) \gamma, a_o(980) \gamma$ $\phi \rightarrow \eta \gamma, \eta' \gamma$ $\phi \otimes \rho \pi, \pi^+ \pi^- \pi^o$

Continuum physics

e+e⁻ @hadrons (*via* radiative return)

Summary of $DA\Phi NE$ Operations

March 1st 1998: First collisions 1999 run: 2.5 pb⁻¹ detector calibration 2000 run: 25 pb⁻¹ 7.5 x 10⁷ f first published results

2001 run: **190 pb**⁻¹ **5.7 x 10⁸ f** *analysis in progress*

2002 run: 300 pb⁻¹ 9.0 x 10⁸ f *analysis in progress*

DA Φ NE in 2002: still improving

The KLOE detector

Quadrupole Calorimeter (QCAL) ⇒ Lead/Scintillator tile calorimeter inside KLOE

Electromagnetic Calorimeter (EMC)

- ⇒ Lead/Scintillating Fiber calorimeter
- ⇒ 24 Barrel Modules
- ➡ 64 End-Cap Modules
- ➡ 4880 channels

Drift Chamber (DC)

- \Rightarrow Cylindrical structure, (4 m $\emptyset \times 3.3$ m)
- ⇒ 12582/52140 sense/total wires
- ⇒ All stereo geometry
- \Rightarrow Helium (90 %) + Isobutan (10 %)

The KLOE detector

Detector related issues

- KLOE Detector performing according to design
- No aging so far
- Suffering intense, time varying, bkg from $DA\Phi NE$

year 2000 physics is a tiny fraction computing was used for tracking background events

year 2001 DA Φ NE gave more physics

year 2002

Physics is now 23 % computing is now used for useful physics

KLOE Published Results: 2000 data

Kaon Physics

Non-Kaon Physics

 ϕ **(Particular Constraints) (a)** ϕ **(B)** ϕ **(a)** ϕ **(b)** ϕ **(c)** ϕ **(c)**

 $\phi \otimes \mathbf{p^0 p^0 g}[\mathbf{f_o}(980) \gamma]$

 ϕ **B h**'g/ ϕ **B h**g[**h**'-**h** mixing]

Kaon Physics

Copyright 3 2003 United Feature Syndicate, Inc.

$K_s \rightarrow p^+p^-(g) / K_s \rightarrow p^0 p^0$

Isospin decomposition

$$\frac{BR(K_{s} \rightarrow \boldsymbol{p}^{\pm} \boldsymbol{p}^{\pm})}{BR(K_{s} \rightarrow \boldsymbol{p}^{0} \boldsymbol{p}^{0})} \approx \sqrt{\frac{m_{\kappa}^{2} - 4m_{p^{\pm}}^{2}}{m_{\kappa}^{2} - 4m_{p^{0}}^{2}}} \left[2 + 6\sqrt{2} \frac{A_{2}}{A_{0}} \cos(\boldsymbol{d}_{2} - \boldsymbol{d}_{0})\right]} \text{Neglecting } \Delta I = 5/2 \text{ EM contributions:}}$$

$$\frac{\left(A_{0}/A_{2}\right)^{2}}{4t_{p^{0}}} \approx \frac{3}{4} \frac{t_{s}}{t_{p^{0}}} \frac{1}{BR(K^{\pm} \rightarrow \boldsymbol{p}^{\pm} \boldsymbol{p}^{0})} - 1 = \left(22.2 \pm 0.07\right)^{2}}{V \text{sing PDG values for the } K^{0} \rightarrow \pi^{+} \pi^{-} / \pi^{0} \pi^{0} \text{ BRs:}}$$

$$\frac{\delta_{0} - \delta_{0}}{4} \approx \left(56.7 \pm 3.8\right)^{2}$$

This value is in disagreement with:

- the prediction from O(p²) χ pT [Gasser *et al.* '91] $\delta_0 \delta_2 \cong (45 \pm 6)^{\circ}$ $\delta_0 - \delta_2 \cong (45.2 \pm 1.3 \pm \frac{4.5^\circ}{1.6})$
- the value from $\pi\pi$ scattering [Gasser *et al.* 01]

While with the KLOE measurement $\delta_0 - \delta_2 \cong (48 \pm 3)^\circ$

 $K_s \rightarrow \pi^+ e^- \nu / \pi^- e^+ \nu$

$$BR(\pi^{-}e^{+}\nu) = (3.44 \pm 0.09_{stat} \pm 0.06_{syst}) \ 10^{-4}$$
$$BR(\pi^{-}e^{+}\nu) = (3.31 \pm 0.08_{stat} \pm 0.05_{syst}) \ 10^{-4}$$
$$BR(\pi^{\pm}e^{\mp}\mathbf{n}) = (6.76 \pm 0.12_{stat} \pm 0.10_{syst}) \ 10^{-4}$$
$$KLOE PRELIMINARY$$

$$K_{S} \rightarrow \pi^{+} e^{-\gamma} / \pi^{-} e^{+\gamma} v$$

$$\int_{CMD^{2}} \int_{DGKlong} \int_{DGKlong} \int_{DGKlong} \int_{BGKlong} \int_{BG(K_{S} \rightarrow \pi e v) \times 10^{4}} \int_{BR(\pi^{-} e^{+}v)} = (3.44 \pm 0.09 \text{ stat} \pm 0.05 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}v) = (3.31 \pm 0.08 \text{ stat} \pm 0.05 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ BR(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ ER(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ ER(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ ER(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ ER(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ ER(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ ER(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ ER(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ ER(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ ER(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ ER(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ ER(\pi^{-} e^{+}m) = (6.76 \pm 0.12 \text{ stat} \pm 0.10 \text{ syst}) \cdot 10^{-4} \\ ER(\pi^{-} e^{+}m) =$$

KLOE PRELIMINARY

Leptonic Asymmetries

TIm
$$a = Im b = Im c = Im d = 0$$
CPIm $a = Re b = Im c = Re d = 0$ CPT $b = d = 0$ $\Delta S = \Delta Q$ $c = d = 0$

Comparison with KTeV/CPLEAR

 $K_{I} \rightarrow charged$

 K_{L} \rightarrow charged

 $K_{I} \rightarrow gg/K_{I} \rightarrow p^{0}p^{0}p^{0}$

Charged Kaons

Harvest of measurements, including V_{us} , waiting for ongoing *ad hoc* reprocessing with:

•improved tracking at low β ;

•better rejection of vicious machine background.

Charged Kaons

Harvest of measurements, including V_{us} , waiting for ongoing *ad hoc* reprocessing with:

•improved tracking at low β ;

•better rejection of vicious machine background.

BRs essentially from[Chiang et al., '72].,

Prospects for ϵ'/ϵ

$$doubleRatio = \frac{BR(K_L \rightarrow \boldsymbol{p}^+ \boldsymbol{p}^-) / BR(K_S \rightarrow \boldsymbol{p}^+ \boldsymbol{p}^-)}{BR(K_L \rightarrow \boldsymbol{p}^0 \boldsymbol{p}^0) / BR(K_S \rightarrow \boldsymbol{p}^0 \boldsymbol{p}^0)} = 1 + 6 \times \text{Re}\left(\frac{\boldsymbol{e}'}{\boldsymbol{e}}\right)$$

K_L

Statistical error : » 1%

Contributions to the <u>systematic error</u>:

Presently at about 2% level, improving by work on:

Residual effects in tracking (gravitational sags)

Separation of overlapping clusters

➢ Regeneration

Need at least x10 data to reach the 10⁻⁴ *régime*

<u>Statistical error</u> : already negligible

Contributions to the systematic error

Source	Error, %
Tagging	0.55
γ-counting	0.20
trigger and t ₀	0.23
tracking	0.26

Total error 0.68 %

Should scale down to 0.1% on full data set

Now -0.1%

Non-Kaon Physics

© LUPO ALBERTO, SILVER/McK, Lic. by UFS, Inc.

 $\phi \rightarrow (\rho \pi) \rightarrow \pi^+ \pi^- \pi^0$

Y2K 17 pb⁻¹ analysis of Dalitz Plot allowed to extract ρ parameters (m, Γ) for each state of charge and non- ρ contributions (direct, $\omega \pi^0$, ρ').

 $\phi \rightarrow (\rho \pi) \rightarrow \pi^+ \pi^- \pi^0$

Y2K 17 pb⁻¹ analysis of Dalitz Plot allowed to extract ρ parameters (m, Γ) for each state of charge and non- ρ contributions (direct, $\omega \pi^0$, ρ').

parameter	fit(a)
$\chi^2 \; [p(\chi^2)]$	$1939\ [12\%]$
$M_{ ho^0}$	
$M_{ ho^+}$	$775.8 \pm 0.5 \pm 0.3$
$M_{ ho^-}$	$PDG(2002) = 771.1 \pm 0.9$
$\Gamma_{ ho^0}$	
$\Gamma_{ ho^+}$	$143.9\pm1.3\pm1.1$
Γ_{ρ} -	$PDG(2002) = 149.2 \pm 0.7$
a_d	$0.78 \pm 0.09 \pm 0.13$
ϕ_d	$2.47 \pm 0.08 \pm \pm 0.08$
$a_\omega imes 10^3$	$7.1\pm0.6\pm0.8$
ϕ_ω	$-0.22 \pm 0.11 \pm 0.04$

 $\phi \rightarrow (\eta \cdot \gamma) / (\eta \gamma) \rightarrow \pi^+ \pi^- \gamma \gamma \gamma$

 $\phi \rightarrow (\eta \gamma) / (\eta \gamma) \rightarrow \pi^+ \pi^- \gamma \gamma \gamma$

 $\phi \rightarrow (f_0 \gamma) / (a_0 \gamma)$

 f_0/a_0 Couplings

$$\frac{\mathrm{d}}{\mathrm{dm}}\mathrm{BR}(\Phi\to\mathrm{S}\tilde{\mathrm{a}}\to\tilde{\mathrm{d}}^{\,0}\tilde{\mathrm{d}}^{\,0}g)=\frac{2\mathrm{m}^{2}}{\tilde{\mathrm{d}}}\frac{\tilde{\mathrm{A}}_{\mathrm{s}\tilde{\mathrm{s}}\tilde{\mathrm{a}}}\tilde{\mathrm{A}}_{\mathrm{s}\tilde{\mathrm{d}}^{\,0}\tilde{\mathrm{d}}^{\,0}}}{\left|\mathrm{D}_{\mathrm{s}}\right|^{2}}\frac{1}{\tilde{\mathrm{A}}_{\mathrm{o}}}$$

$$\widetilde{A}_{\ddot{o}S\tilde{a}}(m) = \frac{g_{SK^{+}K^{-}}^{2}g_{\ddot{o}K^{+}K^{-}}^{2}}{12\tilde{\eth}} \frac{|g(m)|^{2}}{M_{\ddot{o}}^{2}} \left(\frac{M_{\ddot{o}}^{2}-m^{2}}{2M_{\ddot{o}}}\right)$$

		KLOE	4q model	(uū±dd)/√2	SS	
f ₀	g ² _{KK} /(4π)	2.79 ± 0.12	~ 2.3	~ 0.15	~ 0.30	(GeV ²)
	g _{ππ} /g _{κκ}	0.50 ± 0.01	~ 0.35	~ 2	~ 0.5	
	g ² _{KK} /(4π)	0.40 ± 0.04	~ 2.3	~ 0.15		(GeV ²)
<mark>9</mark> 0	g _{ηπ} /g _{κκ}	1.35 ± 0.09	~ 0.9	~ 1.5		

f₀ parameters compatible with 4q model
 a₀ parameters not well described by the 4q model

 $\sigma(e^+e^- \rightarrow hadrons)$

⇒KLOE energy range is responsible for about 67 % of δa_m and for 17 % of $\delta \alpha(M_Z)$. ⇒Novosibirsk CMD2 direct measurement is at 0.6% level, but disagrees, after CVC rotation, with τ data [Davier *et al., Jan*03].

$$\boldsymbol{s}_{e+e\to \boldsymbol{pp}}^{I=1} = \frac{4\boldsymbol{pa}^2}{s} \frac{m_t^2}{6S_{EW} |V_{ud}|^2} \frac{BR(\boldsymbol{t} \to \boldsymbol{pp}^0 \boldsymbol{n}_t)}{BR(\boldsymbol{t} \to \boldsymbol{en}_e \boldsymbol{n}_t)} \left[\left(1 - \frac{s}{m_t^2} \right)^2 \left(1 + \frac{2s}{m_t^2} \right) \right]^{-1} \frac{1}{N} \frac{dN}{ds}$$

 \Rightarrow KLOE has analyzed 2001 data. Statistical errors are already at the 0.2% level. Systematic effects are still at 2%, being further investigated.

 \Rightarrow Present goal is the measurement of the hadronic cross section at level of 1 %.

 $\boldsymbol{S}_{e+e-\rightarrow \boldsymbol{pp}}^{I=1}$

 $\sigma(e^+e^- \rightarrow hadrons)$

 \Rightarrow KLOE energy range is responsible for about 67 % of δa_{m} and for 17 % of $\delta \alpha(M_{7})$. ⇒Novosibirsk CMD2 direct measurement is at 0.6% level, but disagrees, after CVC rotation, with τ data [Davier *et al.*, Jan 03].

 \Rightarrow KLOE has analyzed 2001 data. Statistical errors are already at the 0.2% level. Systematic effects are still at 2%, being further investigated.

 \Rightarrow Present goal is the measurement of the hadronic cross section at level of 1 %.

Preliminary Comparisons

KLOE 2001 data compared with the MC generator **PHOKHARA (NLO)** [Kuhn *et al.* '02], that is expected to be accurate at 0.5% level (should still improve on FSR description). KLOE DATA compared with parametrization of direct \sqrt{s} SCAN performed by CMD2 at Novosibirsk.

Prospects for the future

Copyright © 2003 Creators Syndicate, Inc.

Plans for 2003

DAFNE

- Increase peak luminosity and reach 1.5 10³² cm⁻²s⁻¹
- Restart by May 2003 with FINUDA first
- Deliver successively about 1 fb⁻¹ to KLOE

KLOE

- Install new interaction region to ease DAΦNE operation
- Show ε'/ε capability
- K⁰, K[±] Branching ratios, V_{us}
- Hadronic cross section

Plans for 2003

KLOE

- Install new interaction region to ease DAΦNE operation
- Show ε'/ε capability
- K⁰, K[±] Branching ratios, V_{us}
- Hadronic cross section

Conclusions

- ✓ Many analyses are about to be finalized ✓ K_s are ready for ϵ'/ϵ at 5.10⁻⁴ level
 - \checkmark K_s leptonic asymmetries OK
- ✓ K_L need at least 10 times more data to get ε'/ε at 5.10⁻⁴ level
 - $\checkmark K_L$ BRs currently at 2% level
 - ✓1 fb⁻¹ expected for next run