CP violation and rare decays in K sector at NA48

> **Ivan Mikulec** HEPHY, Vienna, Austria

> > La Thuile March 13, 2003

On behalf of the NA48 Collaboration:

Cagliari Cambridge CERN Chicago Dubna Edinburgh Ferrara Firenze Mainz Northwestern Orsay Perugia Pisa Saclay Siegen Torino Vienna Warsaw

Introduction

- Results on CP violation
- Mesurement of direct CP violation in $K^0 \to \pi\pi$ decays: $\Re e \frac{\varepsilon'}{\varepsilon}$
- Mesurement of charge asymmetry in $K_L \rightarrow \pi e \nu$ decays: $\delta_L(e)$
- Search for CP violation in $K_S \to \pi^0 \pi^0 \pi^0$ decay: η_{000}

Results on rare decays

- Precision measurement of $K_{S,L}
 ightarrow \gamma \gamma$ decays
- First observation of $K_S \to \pi^0 \gamma \gamma$ decay new χ

Outlook and Summary

NA48 detector

Overview of NA48 runs 1997 1998 1999 $K_L + K_S$ $K_L K_S$ $K_L + K_S$ $K_L + K_S$ $K_{e3} \frac{1}{HI} K_{\mu 3 test}$ ε'/ε run ε'/ε run ε'/ε run $(K_L \text{ rare decays, } \dots)$ $(K_L \text{ rare decays, } ...)$ NA48/1-phase I NA48/1-phase II 2000 2001 2002 K_L K_S high int. $K_L + K_S$ η K_S,Λ ε'/ε $(K_S ightarrow \pi^0 \gamma \gamma,$ ε'/ε run ε'/ε checks high intensity checks $(K_L ightarrow \gamma \gamma,$ $(K_{e3}, K_{\mu 3}, \ldots)$ $K_S \rightarrow \gamma \gamma$, ...) η_{000})

no spectrometer

Results on CP violation

Final NA48 result on $\mathfrak{Re}_{\varepsilon}^{\underline{\varepsilon}'}$

$\delta_L(e)$ measurement

if CPT conserved

- from 2001 data
- $\delta_L(e) = \frac{N(\pi^- e^+) N(\pi^+ e^-)}{N(\pi^- e^+) + N(\pi^+ e^-)}$
- $\sim 10^8$ events from each mode collected
- main source of systematics: asymmetry in particle interactions

$\delta_L(e)$ measurement - Preliminary

η_{000} measurement

If CPT conserved: $\Re e \eta_{000}$ - CP violation in mixing $\Im m \eta_{000}$ - Sensitive to direct CP violation

- 2000 near-target data 5.9×10^6 events
- first order acceptance corr. with **2000 far-target** data
- MC used only for second order acceptance corr.
- fit f(E,t) in 70 < E < 170 GeV

$$\begin{split} f(E,t) &= \frac{I_{3\pi^0}^{near}}{I_{3\pi^0}^{far}} = A(E) \Big[1 + |\eta_{000}|^2 e^{t/\tau_L - t/\tau_S} + \\ & 2D(E) e^{t/2\tau_L - t/2\tau_S} \big(\Re \epsilon \eta_{000} cos(\Delta mt) - \Im m \eta_{000} sin(\Delta mt)) \big] \\ D(E): \ K^0 - \overline{K^0} \text{ dilution at target (from NA31)} \end{split}$$

fit parameters: A(E), $\mathfrak{Re}\eta_{000}$, $\mathfrak{Im}\eta_{000}$

η_{000} measurement - *Preliminary*

Results on rare decays

 $K_S \rightarrow \gamma \gamma$ measurement

Unambiguous and clean prediction of O(p^4) amplitude from χPT : $BR = 2.1 \times 10^{-6} \stackrel{\text{D'Ambrosio, Espriu}}{\text{Goity}}$

Data from 2000 near-target run, normalised to $K_S \to \pi^0 \pi^0$ decay rate Principal background sources: $K_S \to \pi^0 \pi^0$ with only 2 showers in the LKr calorimeter. reconstructed vertex moves downstream due to missing energy choose decays in $-1m < z_{vertex} < 5m$ wrt. collimator exit. $K_L \to \gamma\gamma$ - irreducible: $\frac{N(K_L \to \gamma\gamma)}{N(K_S \to \gamma\gamma)} \sim 1.5$ in the decay volume • use $K_L \to 3\pi^0$ to estimate K_L flux • use 2000 far-target run to measure $\frac{\Gamma(K_L \to \gamma\gamma)}{\Gamma(K_L \to 3\pi^0)}$ (present PDG accuracy insufficient)

 $\frac{\Gamma(K_L \to \gamma \gamma)}{\Gamma(K_L \to 3\pi^0)} = (2.81 \pm 0.01_{stat} \pm 0.02_{syst}) \times 10^{-3} \text{ PDG: } (2.77 \pm 0.08) \times 10^{-3}$

$K_S \rightarrow \gamma \gamma$ measurement

$K_S \rightarrow \pi^0 \gamma \gamma$ measurement

Up to now unobserved: NA48 placed recently the best limit to $BR(K_S \to \pi^0 \gamma \gamma)_{z_q > 0.2} < 3.3 \times 10^{-7}$ at 90% CL from 1999 test-run data χPT predictions: Ecker, Pich and de Rafael: Phys. Lett B 189 (1987) 363.

 χPT predicts:

- $BR(K_S \to \pi^0 \gamma \gamma)_{z_q > 0.2} = 3.8 \times 10^{-8}$
- momentum dependence of the weak vertex
- chiral structure of the weak vertex is testable from the shape of the $z_q = (m_{34}/m_K)^2$ distribution

$K_S \rightarrow \pi^0 \gamma \gamma$ measurement

$K_S \rightarrow \pi^0 \gamma \gamma$ measurement

Preliminary

• Statistics insufficient to test the chiral structure of the weak vertex

$K_S \rightarrow \pi^0 \gamma \gamma$ measurement - Preliminary

	e	5		
Number of events in sig. region	31.0	\pm	5.6	
Beam activity	-7.4	\pm	2.4	
$K_S ightarrow \pi^0 \pi^0_D$ background	-2.4	\pm	1.2	
$K_L o \pi^0 \gamma \gamma$	-3.8	\pm	0.0	
Acceptance		\pm	0.7	
Remaining	17.4	\pm	6.2	
Preliminary resu	llt:	0		-8
$BR(K_S \to \pi^0 \gamma \gamma)_{z_q > 0.2} = (4.9 \pm 1.6\varepsilon)$	$_{stat}\pm 0.$	δ_{syst}	$() \times 10^{-1}$	_0
$BR(K_S \to \pi^0 \gamma \gamma)_{z_q > 0.2} = (4.9)$	$0 \pm 1.7)$	$\times 10$	-8	
(χPT Theory: $BR(K_S ightarrow \pi^0 \gamma \gamma)_{z_q}$ >	$b_{0.2} = 3.8$	8×10	$^{-8})$	
Probability that ≥ 31 events are consistent	t with ba	ackgro	ound is	$< 9 \times 10^{-10}$

Ivan Mikulec

Outlook

2002 run with near-target neutral beam was succesfull and analysis is advanced Main topics:

- Search for $K_S \to \pi^0 e^+ e^-$, $K_S \to \pi^0 \mu^+ \mu^-$ decays
- Ξ^0 beta decays
- Ξ^0 radiative decays
- Other K_S and hyperon rare decays

- Preparations for 2003 run with charged kaon beam are in full speed Main topics:
- Search for direct CP violation by measuring slope asymmetry in $K^{\pm} \rightarrow 3\pi$ decays
- $K^{\pm}e4$ decay
- $K^{\pm}l3$ decays
- Rare K^{\pm} decays

- The direct CP violation in $K^0 \rightarrow 2\pi$ measurement is finished with a highly significant result. The design precision was achieved.
- $\delta_L(e)$ has been measured with competitive precision
- An order of magnitude improvement in determination of η_{000} has been achieved improvement of the CPT test using Bell-Steinberger relation

Rare kaon decays

- Precise measurement of $K_S \rightarrow \gamma \gamma$ decay indicates a significant $O(p^6)$ contribution and provides an input for higher loop calculations of χPT
- Decay $K_S \to \pi^0 \gamma \gamma$ was observed for the first time with BR in agreement with χPT

There is more to come:

- NA48/1 studying K_S and hyperon decays collected successfully data in 2002 and the analysis is in advanced stage
- NA48/2 run this year with simultaneous charged kaon beams is in full preparation