

### New Phenomena Results from DØ in Run II

- Run II vs Run I
- A new capability for DØ:  $Z \rightarrow \tau^+ \tau^-$
- Reports from 7 new Run II analyses
  - Chargino/Neutralino Search : Trilepton mode
  - GMSB SUSY Search :  $2\gamma + \not{E}_T$
  - SUGRA Search : Jets +  $E_{T}$
  - Limits on New Physics in an e- $\mu$  Search
  - Search for 2nd Gen LQ : 2  $\mu$  + 2 jets
  - Search for Large Extra Dimensions : di-EM channel
  - Search for Large Extra Dimensions : di-µ channel
- Conclusions



### **Run II vs Run I**

- We have higher production cross sections: 1.96 TeV
  - Always nice for searches
- Most analyses in this talk utilize around 30-50 pb<sup>-1</sup> (Run I total was ~120 pb<sup>-1</sup>)
  - Variation in trigger availability
  - Variation in data quality cuts for particular physics object
- We aren't using the full suite of Run II triggers yet
  - Still commissioning central track and displaced vtx triggers



# $\mathbf{Z} \rightarrow \tau^{+}\tau^{-} \textbf{ - A Significant Analysis for}$ Searches

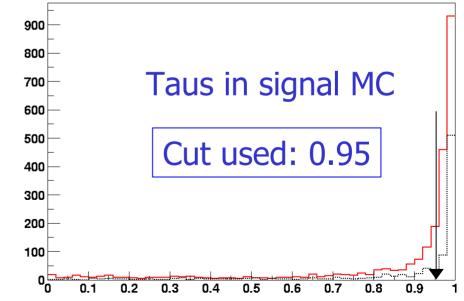
- $\tau$ 's are often a significant part of the Beyond the Standard Model phenomenology
  - Trilepton SUSY searches, third generation leptoquarks, Higgs searches ...
- Need a SM channel to give confidence in modeling, detection efficiency, ...
- 2 searches at DØ are seeing evidence for the decay  $Z \to \tau^+ \tau^-$  , for the first time at Tevatron
- One analysis searches for e and hadronic  $\tau$  decays, the other for  $\mu$  and hadronic  $\tau$  decays

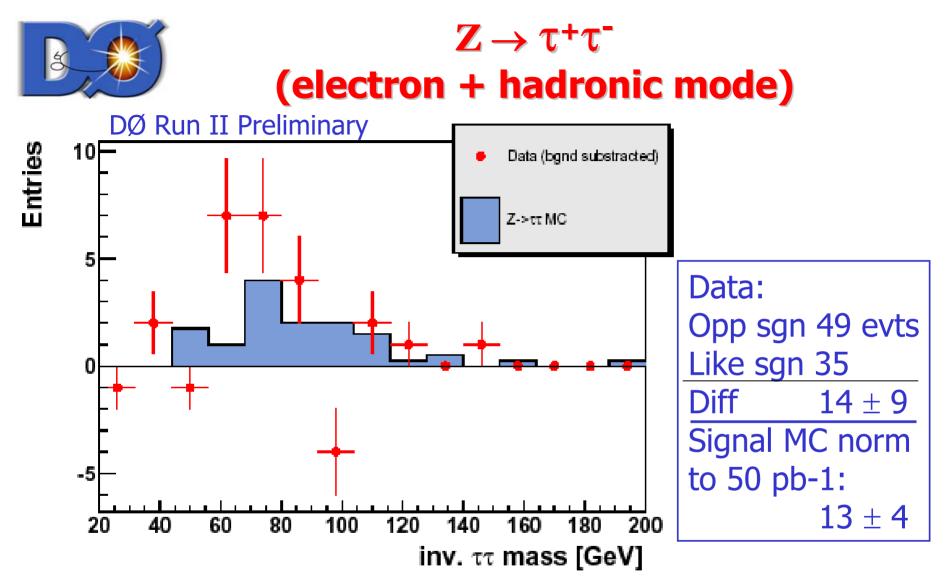


 $Z \rightarrow \tau^+ \tau^-$ 

### (electron + hadronic mode)

- Method: Use collinear approximation to calculate  $M\tau\tau$ 
  - preselect electron sample with  $E_T > 12$  GeV; require jet which is a  $\tau$  candidate
  - daughter particles from  $\tau$  are assumed to give  $\tau$ direction; measured  $\mathbf{E}_{T}$  used to project neutrino momentum along  $\tau$  direction
  - requires cut in  $\Delta \phi$  in order to keep reasonable resolution (significant efficiency loss)
  - for bkg rejection,  $M_T(e_v) < 60 \text{ GeV}$ ;  $M_{e_\tau} < 60 \text{ GeV}$
  - neural net used to tighten  $\tau$  ID : don't consider 3-prong decays
  - use like sign distribution as background estimator





### $Z \rightarrow \tau^+ \tau^-$ (electron + hadronic mode)

#### **DØ Run II Preliminary** 14000 12000 Tau candidates in data 10000 8000 6000 4000 2000 900 0 0.3 04 0.5 0.6 0.7 0.2 0.8 800 700 Neutral Net Variables: 600 Net 1: EM12fr, ring iso, profile, 500 400 trk iso, Et/pt 300 Net 2: ring iso, profile, trk iso, 200 Et/pt, e1e2, dalpha 100

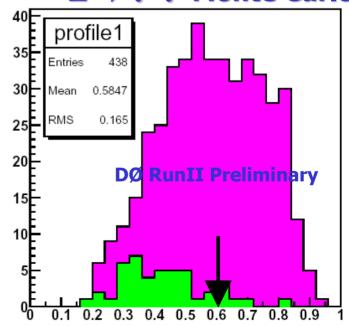
Neutral Net Outputs: Net 1 is for  $\tau \rightarrow \pi^{\pm} \nu$ Net 2 is for  $\tau \rightarrow \pi^{\pm} \pi^{0} \nu$ 

#### DØ Run II Preliminary

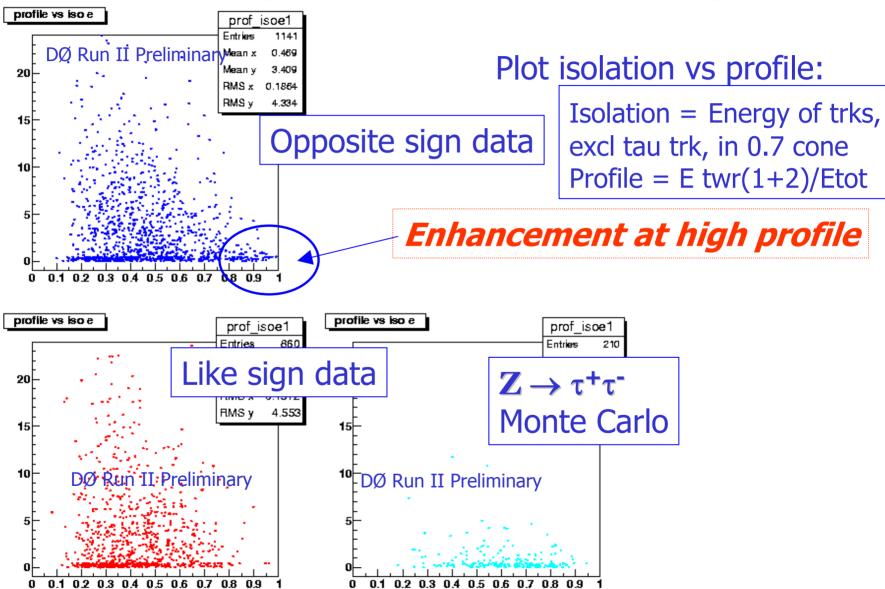




Distribution in invariant  $\tau\tau$  mass, calculated using collinear approximation, (opp sign - like sign)


LaThuile 2003 ~ Wyatt Merritt, Fermilab




 $Z \rightarrow \tau^+ \tau^-$ 

### (muon + hadronic mode)

- Successive cuts to enhance tau signal, starting from single mu sample
  - central, isolated tight muon,  $p_T > 7GeV$ , and a jet flagged as a  $\tau$  candidate w/  $E_T > 7GeV$ , and the two objects with ( $\Delta \phi > 0.4$ )
  - increase  $\Delta \phi$  cut to 2.5, increase  $\tau E_T$  cut to 15 GeV, require isolated single trk matching  $\tau Z \rightarrow \tau^+ \tau^-$  Monte Carlo
    - plot profile ( sum of two leading ET towers/total ET)
    - normalize low end of profile dist to obtain factor in QCD sample between opp and same sign: 1.04
  - require profile > 0.6







~40 pb<sup>-1</sup>



# **Analysis 1: Chargino/Neutralino Search**

- Model: mSUGRA, tan  $\beta$  = 2,  $\mu$  < 0; chargino/neutralino pair production with both decaying to leptons
- This analysis:  $2e + lepton + \not{E}_T$ 
  - Triggers: 2e single and diEM triggers
  - Preselection: 2 EM objects with  $E_T > 7$  GeV
  - Selection: EM ID;  $E_T(e_1) > 15$ GeV,  $E_T(e_2) > 10$ GeV, both w/ trk match; 10GeV < M<sub>ee</sub> < 70GeV; M<sub>T</sub>(e) > 15 GeV; 3rd lepton requirement: add'l trk p<sub>T</sub> > 5 GeV, well isolated from other 2 leptons (0.4 in  $\eta$  and  $\phi$ );  $\eta < 3$ ;  $E_T > 15$ GeV
  - Background estimation: SM processes w/ real  $E_T$  from PYTHIA + full det sim; QCD bkg from data w/ inverted ID cuts

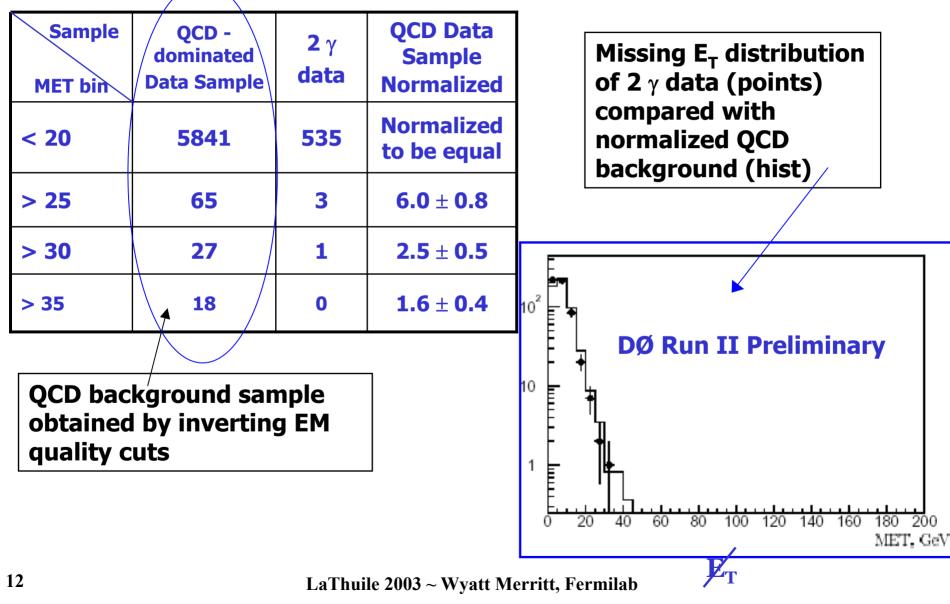


### **Chargino/Neutralino Search - cont'd**

|                      | Sum Bkg                 | Data |
|----------------------|-------------------------|------|
| ID + kinem + trk     | <b>3216</b> ± <b>43</b> | 3132 |
| $10 < M_{ee} < 70$   | 660 ± 19                | 721  |
| M <sub>T</sub> > 15  | <b>96 ± 8</b>           | 123  |
| 3rd trk              | <b>3.2 ± 2.3</b>        | 3    |
| ME <sub>T</sub> > 15 | <b>0.0 ± 1.4</b>        | 0    |

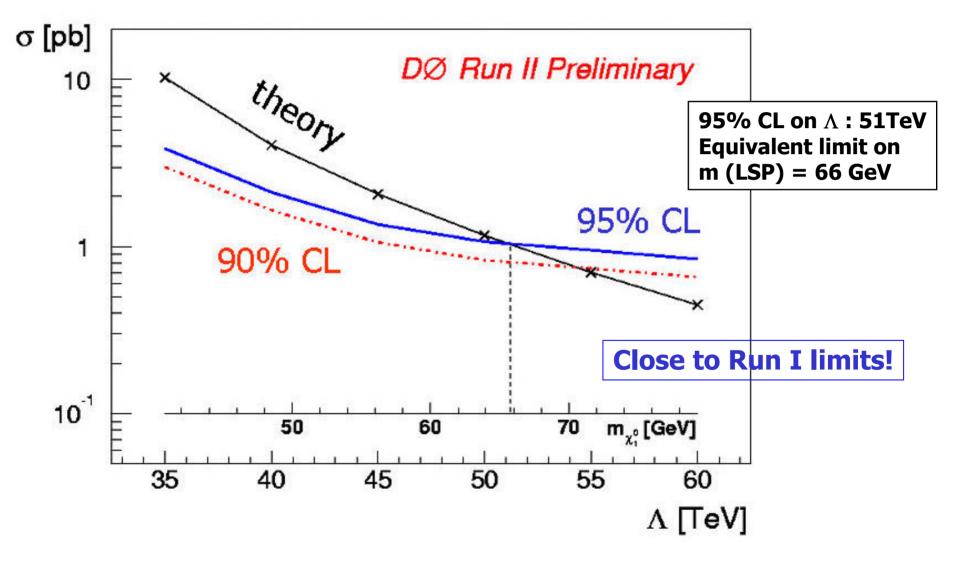
Result for ee + lepton•efficiency 3-6 % for 2 mSUGRA pts•excludes (σ x BR) = 3.5-2.2 pb

~40 pb<sup>-1</sup>




## Analysis 2: GMSB SUSY Search

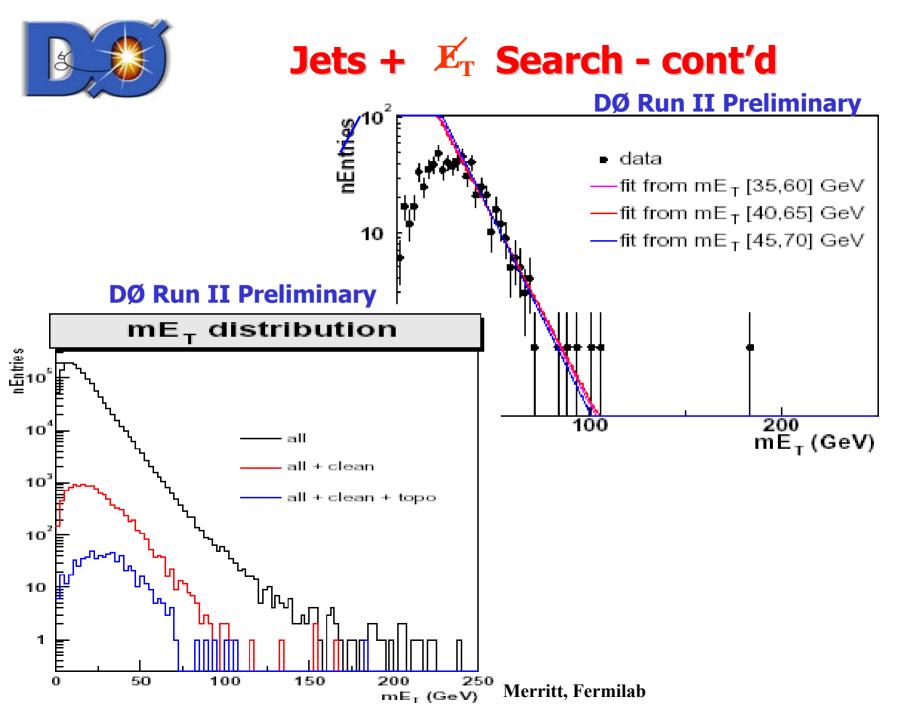
- The model: Gauge-Mediated Symmetry Breaking SUSY with neutralino NLSP, characterized by  $\Lambda$ , the scale of SUSY breaking. Params used: M = 2  $\Lambda$ , N<sub>5</sub> = 1, tan  $\beta$  = 15, sign(mu) positive
- - 3 Triggers: 1 or 2 EM objects (>97% eff for  $2\gamma w/E_T$ >20GeV)
  - Select 2 EM obj: central  $\eta$ , standard EM ID, no matched trks,  $E_T > 20$  GeV
  - Topological and data quality cuts chosen to minimize QCD background and non-gaussian tails for  $\mathbf{E}_{\mathbf{T}}$ 
    - no jets in InterCryostat region
    - leading jet and MET more than 2.5 radians apart
  - MET calculated using cells (cells in jets, for outer region)

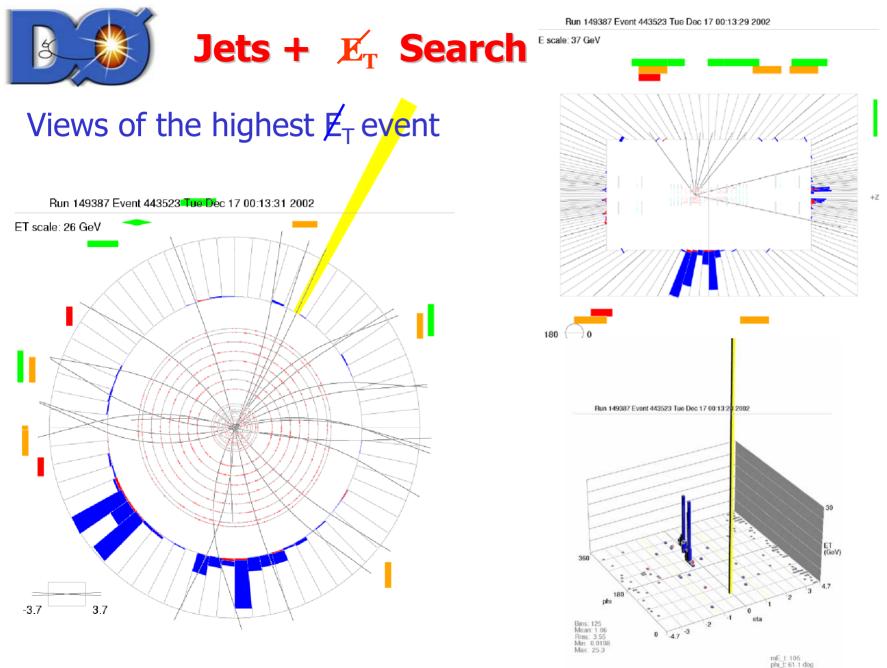



### **GMSB SUSY Search - cont'd**






### **GMSB SUSY Search - cont'd**






### 

- Standard SUGRA, neutralino LSP
- Squark gluino pair production; in particular, signal was estimated for sbottom pairs
- - Trigger: single, central high  $p_T$  jet > 65 GeV
  - ID: cone 0.7 jets, ME<sub>T</sub> from cal towers, JES corrections
  - Selections: Jet quality cuts, electrons removed, angular separation cuts on 2 leading jets, and each of 3 leading jets with  $ME_T$ ; data quality cuts;  $p_T$  of leading jet > 100 GeV (insures trigger eff)
  - Background estimations: PYTHIA-generated and fully simulated samples for physics backgrounds (real ME<sub>T</sub>), fit to low ME<sub>T</sub> region for QCD background (mismeasured ME<sub>T</sub>)







### 


| # evts<br>ME <sub>T</sub><br>bin | QCD fit                                          | Total<br>bkg                                     | Data | <b>95% CL</b><br>ε X σ (pb) |
|----------------------------------|--------------------------------------------------|--------------------------------------------------|------|-----------------------------|
| > 70 GeV                         | 17.4 ± 7.9 ± 2.7                                 | $18.4 \pm 7.9 \pm 2.7$                           | 7    | 4.18                        |
| > 80 GeV                         | $8.5 \pm 5.0 \pm 1.7$                            | $\textbf{9.5} \pm \textbf{5.0} \pm \textbf{1.7}$ | 6    | 3.76                        |
| > 90 GeV                         | $\textbf{4.2} \pm \textbf{3.0} \pm \textbf{1.0}$ | $\textbf{5.1} \pm \textbf{3.0} \pm \textbf{1.0}$ | 4    | 3.12                        |
| > 100 GeV                        | $\textbf{2.0} \pm \textbf{1.7} \pm \textbf{0.6}$ | $\textbf{2.7} \pm \textbf{1.7} \pm \textbf{0.6}$ | 3    | 2.69                        |

#### • Use result to set model-ind cross section limit for jets $+E_{T}$



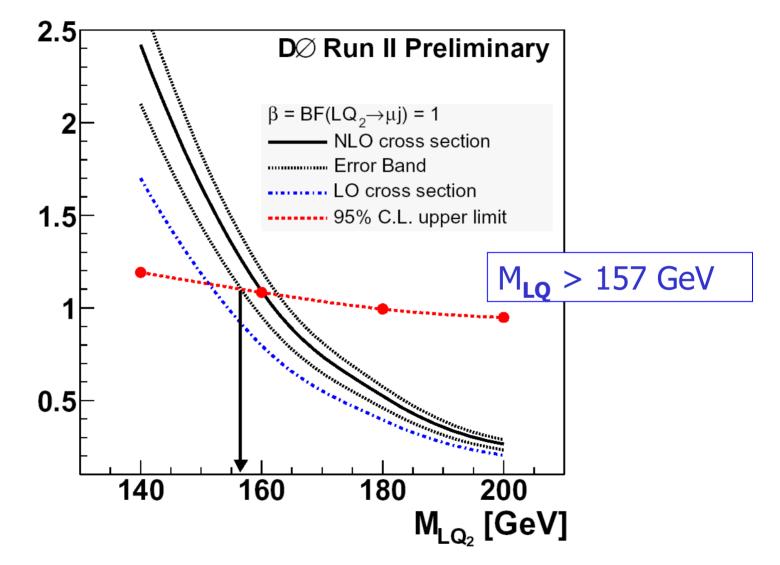
# Analysis 4: Limits on New Physics $\sim^{30 \text{ pb}^{-1}}$ in e $\mu$ + X Channel

- Seek a channel with low background, high discovery potential and try to provide model-independent limit on NP cross section
- This analysis:  $e \mu + X$ 
  - Trigger: 1 elec w/  $E_T > 20$  GeV, 1  $\mu$  w/  $\eta$ <2
  - Selection: muon ID'd with scint info, central trk match, isolation using both cal and trk info, cosmic veto. Electron ID'd w/ isolated EM cluster, trk match.  $p_T$  for e and  $\mu$  > 15 GeV
  - Background identification: misID probability measured from data; SM contributions from PYTHIA generation + full GEANT detector sim (WW,  $Z \rightarrow \tau^+ \tau^-$ , tt)



LaThuile 2003 ~ Wyatt Merritt, Fermilab

~30 pb<sup>-1</sup>



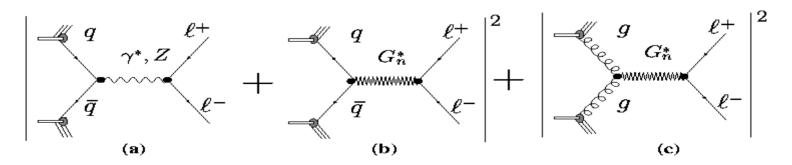

### Analysis 5: 2nd Generation Leptoquark Search

- Model: Scalar LQ pair production, 100% BF to charged lepton
- This analysis:  $2\mu$  + 2jets, no  $\not E_T$ 
  - Trigger: 2  $\mu$  at Level 1, 1  $\mu$  at Level 2, no further rejection at Level 3
  - Preselection: 2 isolated(use both cal & trk info)  $\mu$ 's (central trk match, minimal req on # hits in muon sys),  $p_T > 15$  GeV, opp charge,  $\mu \mu$  mass > 60 GeV
  - Compare w/ leading order simulation for D-Y; correct for observed jet multiplicity in  $\mu \mu$  mass window [60-110GeV]
  - LQ sample selection: require 2 cone 0.5 jets,  $E_T > 20$ GeV,  $\eta < 2.4$ , standard jet ID,  $\mu \mu$  mass > 110 GeV

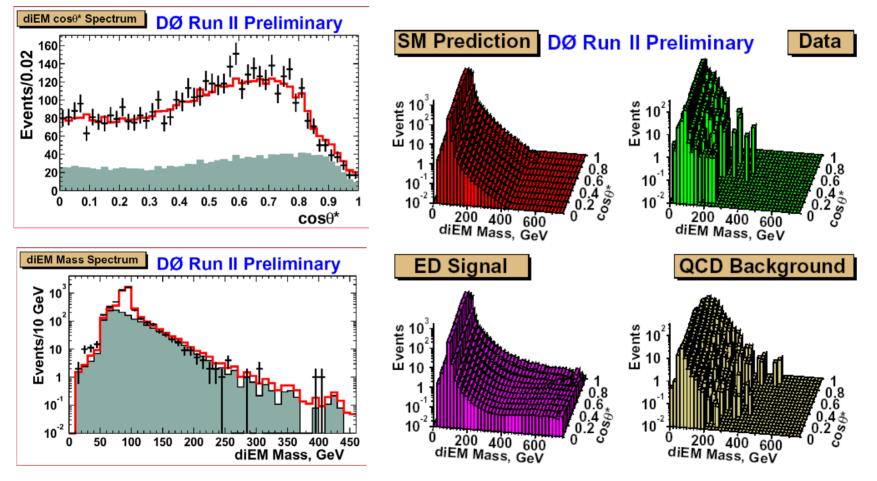


### 2nd Generation Leptoquark Search cont'd




LaThuile 2003 ~ Wyatt Merritt, Fermilab




## Analysis 6: Large Extra Dimensions Search w/ Electrons and Photons

- Model framework: string theory w/ SM restricted to D3-brane, gravity propagating in extra dim's. Signature arises from virtual graviton diagrams contributing to dilepton and diboson production. (Figure below)
- This analysis: ee and  $\gamma\gamma$  channels combined
  - Triggers: single or di-EM triggers

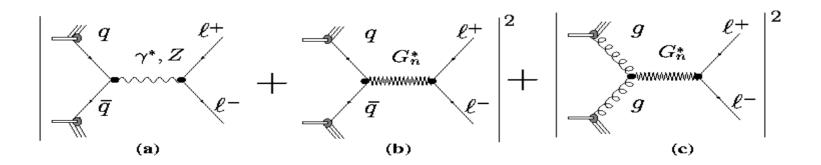
  - Background estimation: fast MC for D-Y and diphoton production, estimate from data for misID background



### Large Extra Dimensions Search w/ Electrons and Photons - cont'd

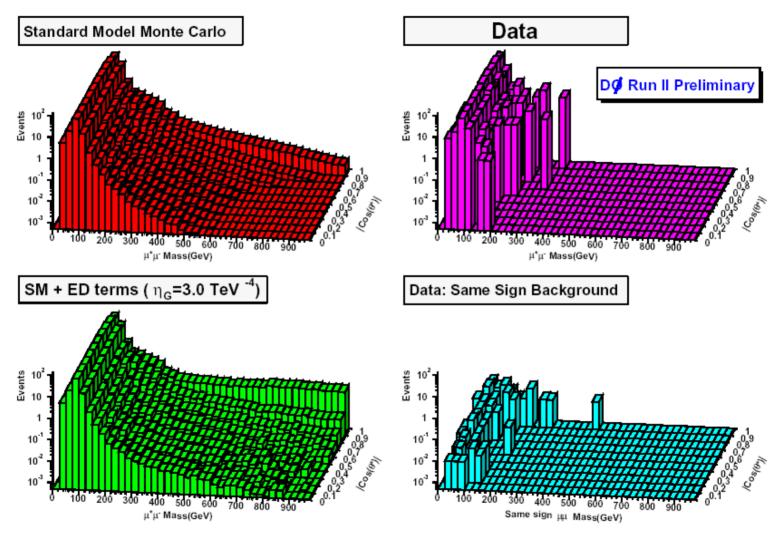


Fit to 2-D distributions to extract SM, interference, and direct gravity terms; use topologies w/ at least 1 EM obj in central calorimeter


LaThuile 2003 ~ Wyatt Merritt, Fermilab

y




# Analysis 7: Large Extra Dimensions Search w/ Muons New Channel!

- Model framework: same as LED/EM search
- This analysis: μμ channel
  - Trigger:  $2 \mu$  at Level 1,  $1 \mu$  at Level 2, no further rejection at Level 3 (fully eff for kinematic cuts used)
  - Selection: 2  $\mu$  w/ cent trk match,  $p_T > 15$  GeV, cosmics removed, iso using cal and trk info,  $M\mu\mu > 40$  GeV (~1200 events)
  - Background estimation: fast MC for D-Y production, estimate from data for misID background





### Large Extra Dimensions Search w/ Muons - cont'd

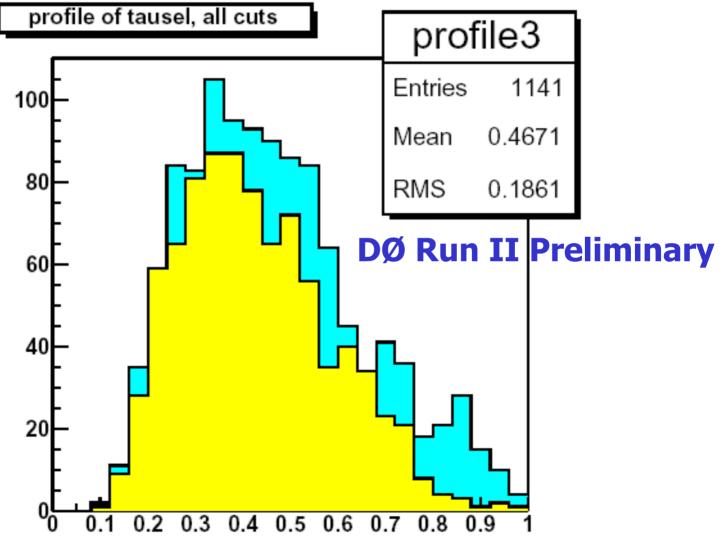




## Large Extra Dimensions Searches -Results

- Fit value of  $\eta_{G}$  : expected to be zero in SM  $\frac{d^{2}\sigma}{dMd\cos\theta} = f_{SM} + f_{int}\eta_{G} + f_{KK}\eta_{G}^{2} \quad \text{where} \quad \eta_{G} = F/M_{S}^{-4}$ di-EM analysis:  $\eta_{G} = 0.0 \pm 0.27 \text{ TeV}^{-4}$ di- $\mu$  analysis:  $\eta_{G} = 0.02 \pm 1.35 \text{ TeV}^{-4}$
- Extract 95% CL upper limits on  $\eta_{\text{G}}$
- Translate to 95% CL *lower* limits on Planck scale  $\rm M_S$  , in TeV, using different assumptions about F

|      | GRW  | HLZ for n=:<br>2         7 |      | Hewett $\lambda = +1$ |
|------|------|----------------------------|------|-----------------------|
| diEM | 1.12 | 1.16                       | 0.89 | 1.00                  |
| diMU | 0.79 | 0.68                       | 0.63 | 0.71                  |


diEM limit close to Run I di $\mu$  limit new channel



- DØ continues to pursue searches for New Phenomena vigorously, including new search channels (LED w/ 2μ).
- DØ's search reach and capabilities are expanding, as we add, for example, τ ID. More luminosity will very soon take us beyond Run I.
- We anticipate with excitement the rise of the discovery potential as Run II 's dataset accumulates

$$Z \rightarrow \tau^+ \tau^-$$

(muon + hadronic mode) - backup

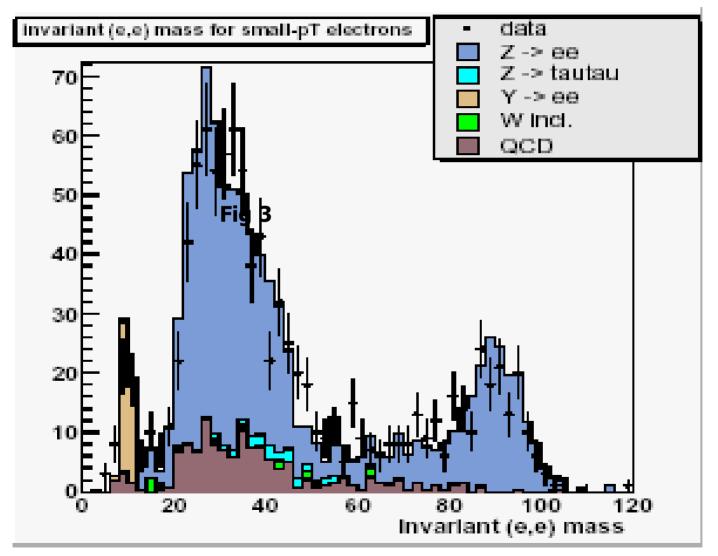


LaThuile 2003 ~ Wyatt Merritt, Fermilab



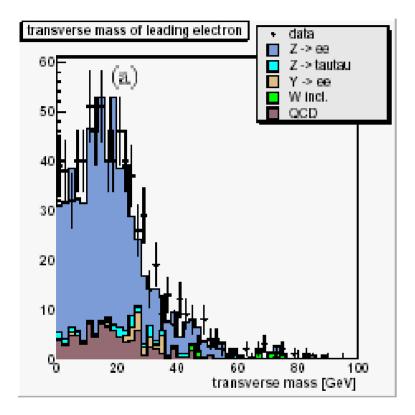
 $Z \rightarrow \tau^+ \tau^-$ 

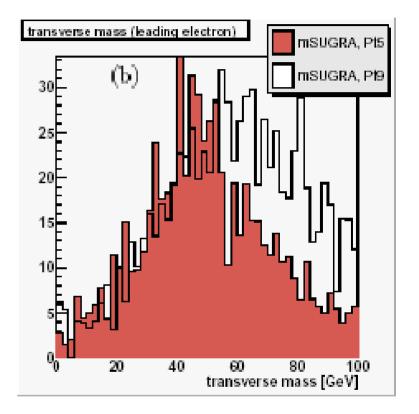
### (muon + hadronic mode)


#### • Resulting event counts

Number of  $\mu~\tau$  events applying succesive cuts

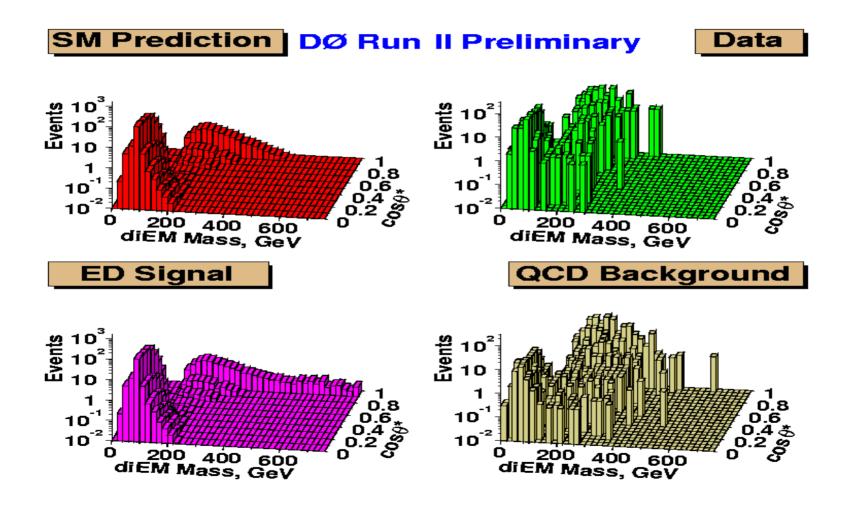
| Cuts                               | DATA  |       |                 | $Z \to \tau \tau$          |
|------------------------------------|-------|-------|-----------------|----------------------------|
|                                    |       |       |                 | <b>50</b> pb <sup>-1</sup> |
|                                    | ++    | ++    | opp - 1.04* eq  | ++                         |
| $p_T^\mu > 7  {f GeV}$             | 25138 | 22999 | $1218^+220$     | $405_{-}^{+}40$            |
| $p_T^{\mu} > 15  { m GeV}$         | 3209  | 2719  | $381^{+}_{-}70$ | $212^+30$                  |
| $ \phi_{\mu} - \phi_{\tau}  > 2.5$ | 1893  | 1557  | $273^+59$       | $200^+_{-}30$              |
| 1 prong                            | 1141  | 860   | ${f 246^+45}$   | $151^+20$                  |
| prof.>0.6                          | 355   | 210   | $136^+24$       | $100^{+}_{-}15$            |





### Chargino/Neutralino Search backup

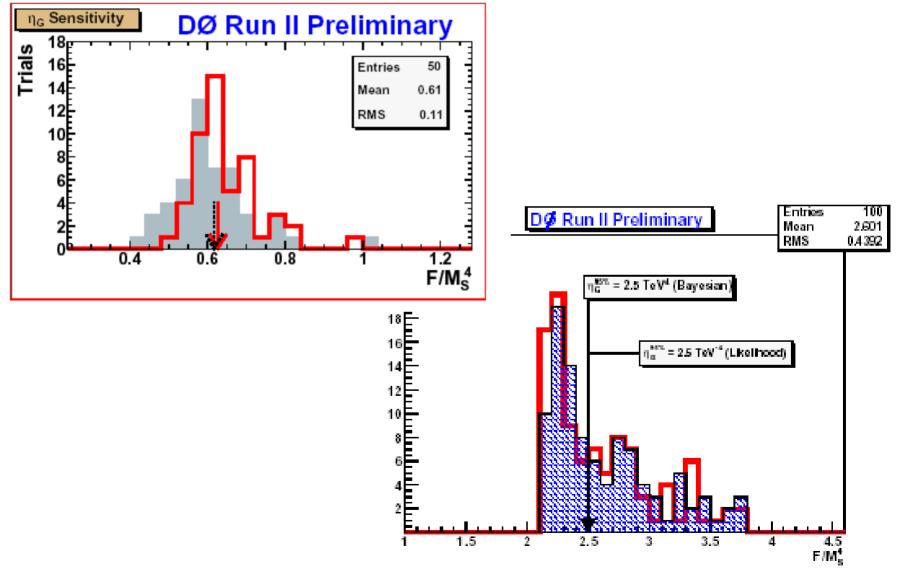





### Chargino/Neutralino Search backup








### Large Extra Dimensions Search w/ Electrons and Photons - backup





### Large Extra Dimensions Searches backup



LaThuile 2003 ~ Wyatt Merritt, Fermilab