





.. RHIC at BNL

The experimental challenges posed
by the currently available Heavy
Nersy J0ss Ion collisions are evident!
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The Large Hadron Collider /2

Scheduled start: 2007

™ ,."'. v "\‘
P‘m& d %, 2

Click
for
enlargement Q&

. SWITZERLAND

.
FRAMCE ™.

s i s AT T :

¢ Area map of

’ L, CERN site \]% =14TeV Spopp = 9-5 TeV (An~17)

SNTZERLAND _-; FRANCE
d

s Note : Vs limited by needed bending

." S i, - CERN sites
-\1\\. GENEVA -‘ _ ,;Q:mmm T ﬁ;::ﬂm p ower.
N = LHC : 1232 superconducting dipoles with
e e T | @ . .
et w11 B =84 T working at 1.9 Kelvin (the

— \ largest cryogenic system in the world)

Chamanix

L e



One HI experiment with a pp program: ALICE

One pp experiment with a HI program: CMS

One pp experiment considering HI: ATLAS .
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Who/what is ALICE ?

1200 After more than 10 years of life,
ALICE TRD ALICE keeps growing! At present,
1% 1 s oilaboration statistics discussions are ongoing with over 20

more institutions from Brazil, Japan,
Turkey and USA
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ALICE is already in its
installation phase:




A

M f

; -
ke
s

-\

2 ex emmerﬁ ‘r

"—- ™ P
— .

ove inl =

-h- i




Experimental conditions @ LHC

* pp commissioning: April 2007
» Wish list of the HI community for the LHC
* Initial few Years (1HI 'year' = 10°¢ effective s, ~like at SPS)

- 2 - 3 years Pb-Pb £ ~ 10?7 cm-2s-1

- 1 year p - Pb ‘like’ (p,dora) <~ 10%° cm-3s-!

- 1 year light ions (eg Ar-Ar) £ ~few 10?7 to 102° cm?s-1

ALICE is limited by pileup in TPC:
- reg. pp runat Vs = 14 TeV £ ~ 10%° and < 3x10% cm-2s-!

* Later: different options depending on Physics results

* Heavy Ion is a part of the LHC initial program,
early pilot run expected by end of 2007

La Thuile, 15/3/2003 Massimo Masera



Why Heavy Ion collisions

Colliding two heavy nuclei at ultrarelativistic energies allows to
create in the laboratory a bulk system with huge density, pressure
and temperature (T over 100,000 times higher than in the core of the
Sun!) and to study its properties

At such densities, hadrons are so closely packed that they
interpenetrate; novel physics phenomena are likely to appear

QCD predicts that under such conditions a phase transition from a
system composed of colorless hadrons to a Quark-Gluon Plasma
(QGP) should occur ( the QGP should live for a very short time, about
10-23s, or a few fm/c).

Possible key to understand Confinement

Also path to the region of highest energy collisions in Cosmic Rays
(Accelerators start competing with the Universel)

La Thuile, 15/3/2003 Massimo Masera
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Lattice QCD calculations

In lattice QCD, non-perturbative problems are treated by

discretization on a space-time lattice.
+ T.2170 MeV  £=0.6 GeV/fm3

» The limit of an ideal
Stefan Boltzmann gas of
quarks and gluons is not
reached - non
perturbative phenomena
are still relevant

La Thuile, 15/3/2003
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Why Heavy Ions at the LHC ?

New or more important at the LHC w.r.t. SPS and RHIC:

# Vanishing net baryon density (uz 2> 0)

# Closer to lattice QCD assumptions, closer to Early Universe
# High energy density = limit of an “ideal” gas of QCD quanta
# Stronger thermal radiation

# Hard probes:

eavy flavours : :
Y Dominant processes in

ets and jet quenching gcilbr;r.lclesg;'?duc‘rlon

RHIC: soft and semi-hard
LHC: semi-hard and hard

La Thuile, 15/3/2003 Massimo Masera
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EQI%

1) & 1™ Ermic™ Esps
2) V/EHC> Y RHIC> / SPS

3) Truc > Truic = Tsps

@ The LHC is the ideal place to study the QGP:
@ hotter - bigger -longer lived
@ ~ 10% particles per event: Event by event physics

La Thuile, 15/3/2003 Massimo Masera
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Diagnostic tools

the experimental challenge: to observe in the final state
the signatures of the phase transition

 Low-p; "soft” probes
thermal particle production from QGP

* single particle spectra

* two particle correlations

* particle abundances and ratios
* flow patterns

- E,

* High-p; "hard” probes

during formation phase parton scattering processes with largeQ?
create high mass or high momentum objects

that penetrate hot and dense matter

Caveat: pure hadronic effects
can mimic expected Q6P signaturures

Therefore one needs:

* to establish experimentally a solid
baseline studying systems where no QGP
is expected (e.g. pp, pA) and use these
data as a reference

matter box

beams of

and are sensitive to the nature of the medium hard probes:

La Thuile, 15/3/2003 Massimo Masera e QGP
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ALICE Physics goals / O

» ALICE has to cover in one experiment
what at SPS was studied by 6-7
different experiments and at RHC by 4

* ALICE aims to study the most wide
spectrum of signals covering in a
thorough way the dynamics of the
collision

La Thuile, 15/3/2003 Massimo Masera



ALICE Physics goals / 1

@ Global observables:
** Multiplicities, n distributions
@ Degrees of freedom as a function of T:
¢ hadron ratios and spectra, dilepton continuum, direct photons
@ Early state manifestation of collective effects:
“»elliptic flow
@ Energy loss of partons in quark gluon plasma:
“*jet quenching, high pt spectra, open charm and open beauty

@ Study deconfinement:
¢ charmonium and bottonium spectroscopy

@ Study chiral symmetry restoration:
¢ neutral to charged ratios, resonance decays

La Thuile, 15/3/2003 Massimo Masera



ALICE Physics goals / 2

@Detect fluctuation phenomena - critical behavior: A
“* event-by-event particle composition, spectra
@ Measure the geometry of the emitting source:
*» HBT, impact parameter via zero-degree energy flow
@ Study pp collisions in the new energy domain (complementary
w.r.t ATLAS and CMS)
@ Search for: Centauro events, strangelets

: !

NEEDS

> Large acceptance » Wide momentum coverage
» Good tracking capabilities » P.I.D. of hadrons and leptons

> Selective triggering > Good sec. vertex reconstruction
> Excellent granularity » Photon Detection

Use a variety of experimental techniques!







Measure of the event geometry...

participants
spectators

y=0

spectators - | |
rapidity

:> Measure the energy of the spectators,
mostly individual neutrons and protons

La Thuile, 15/3/2003 Massimo Masera



.. How? Zero Degree Calorimeters

=> use the machine optics to catch
particles at beam rapidity (angle zero)

Aim: determination of the impact parameter of the collision by
measuring the energy carried by the spectator nucleons
Where: hadronic cal at ~ 116 m from IP

e.m. calorimeter at ~ 8 m from IP

Central events selected with both.
-Energy in hadronic calorimeters < E,
-Energy in e.m. calorimeter >E,

/P

hcEem
Nent = 1000
Mean x = 662

Meany = 64.4 Proton Neutron EM
ZDC (ZP)|ZDC (ZN)| ZDC

»
[
I

- Dimensions | 1, 5 v150| 7x7x100 |7x7x21
| (cm)
i Absorber brass W-alloy lead
2 Fibre angle o 0 0
g wrt LHC axis 0 g e

Fibre & (um) 550 365 550




Tracking: the major challenge
for ALICE

»Event display for a central
Pb-Pb collision. Tracking in
the central brrel involves ol

TOF, TRD, TPC, ITS. AR s RS
> Track finding is carried ' R
out in the TPC

»N_,(-0.5<n<0.5)=8000
>Only a slice of AB=2°
shown
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ALICE LAYOUT: TRACKING

Inner Tracking System (ITS):
6 Si Layers (pixels, drift

Vertex reconstruction

-0.9n<0.9

TRIGGER CHARE
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Time Projection Chamber wveeerode aoow)

largest ever: 88 m3, reucu
570 k channels

readout chamber

for tr acklng ) e‘a - . ol — = 7 . -
and PID via _O S ( I

-0.9<1<0.9

drift gas

Central Electrode Prototype 90% Ne - 10%CO,

25 pm alumlnlzed Mylar on Al frane



Assembly of the TPC
“I- outer field cage and end




The Inner Tracking System

SSD

SDD

SPD

6 Layers, three technologies (keep occupancy ~constant ~2% for
max mult)

- Silicon Pixels (0.2 m2, 9.8 Mchannels) [SeAstaiastantiy

on SDD tomorrow

- Silicon Drift (1.3 m?, 133 kchannels) FaEsl
- Double-sided Strip Strip (4.9 m?, 2.6 Mchannels)




ITS: Many electronics developments
ALICE PIXEL cHIP (all full-custom designs in rad. tol., 0.25 um process)

o —_—— . e T

E
-

50 pm x 425 pm pixels
8192 cells

Area: 12.8 x 13.6 mm?

13 million transistors
~100 uW/channel

ALICE SSD FEE

HAL25 chip:
128 channels
Preamp+s/h+

serial out

ALICE SDD FEE
| Pascal chip:

Il 64 channel preamp+ 256-deep
11 analogue memory+ ADC

Ambra chip: Y

plifiers

uuuwtmmmPurn@.a-m

e e g
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11| derandomizer
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Tracking in the central barrel

> dN/dn| ,.,,=8000 === tracking in the central
barrel is a great challenge !

»Requirements (TPC+ITS):

“+Good efficiency (> 90% ) for p; > 0.2 GeV/c @
0.4 Tesla magnetic field

*Momentum resolution (dp/p) ~ 1+2% at low
momenta and few % at 5 GeV/s

“+Good vertexing capabilities: VO, charm
“Particle identification (dE/dx, kinks)

La Thuile, 15/3/2003 Massimo Masera



Tracking solutions

> Tracking finding and fitting: Kalman filtering
»Track seeding: outer TPC (lower track density)
»Tracks prolonged to ITS

»In ITS: Kalman + vertex constraint (c,=100 um)
»From ITS: back propagation to TRD and TOF

Needs

Primary vertex position measurement

La Thuile, 15/3/2003 Massimo Masera



Vertex determination

Z, is estimated starting from a correlation between
the first 2 ITS layers (PIXEL) in a narrow azimuthal
(Ad) window (here high multiplicity HELPS!)

The coordinates in the
bending plane are
measured in a similar
way.
More precise results
can be obtained by
using the

, reconstructed tracks

La Thuile, 15/3/2003 Massimo Masera



Vertex determination /2

Chi2 /ndf=0.1894/2
12 - A =2921 % 925
HE B  =1.806 +01583
10 ;_ Ztrue =5 cm
~ —
£ 9
vj' A E_ Tz= A +B
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20
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Non diffractive pp collisions generated with Pythia (CTEQ4 LO str. Functions).
Steps: Z coord. found with pixels; coordinate finding from the point of closest
approach of reconstructed tracks; coordinate fitting > reasonable error estimate

Chi2/ ndf = 33116 y resolution TS il

@ Prob = 1.004¢-05 " Prob = 1.249e-06
<500 ECERR R = | Constant =767 + 1321
> Mean =1187+1258 | @ Mean = -0.6684 £ 1.213
0 Sigma =5491: 1409 | 900 Sigma <5313 ¢ 132
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Mean =1.097 11,754
Sigma =90.22 + 1,64
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Display of reconstructed
tracks in ITS.

v'Clusters are red dots

=

lines: primary tracks

v"Magenta lines: secondary

tracks
|TPC tracking efficiency vs event size (in % of a full eve
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Matching with TRD and TOF

#Tracks are back-propagated to the outer detectors: TRD and TOF

#The fist results on the full chain of reconstrunction have been
presented in January 2003

#The matching efficiency TRD-TOF is ~90%

1 Mormalization: reconsiructed tracks in TRD 1 MHormalization: reconstructed tracks in TRD
09l tracks actually reaching the TOF (867%) _ﬂ_—g—i 0.9 tracks actually reaching the TOF iﬂf_ﬂ__ﬂ_—cﬁ—
i e -
08 0B ey PN _*__*__*__*_mw ............ _+_
—4+— tracks matched correctly (75%)
0.7 0.7 + .. | ........ et R
0.6 1 T P
0.5 DS O
_—+— B=0.4T
0.4 B=0.4T 0o AM o
ot W spog i K'fK WS[II][]
U 3 )] :!' |:‘| 3 T N S
0.7 02
0.1 DT e
—h— g4 g L L —h—h— P —d—
05 1 1.5 2 2.5 3 0.5 1 13 2
P rpd GeVic] Precl GeVic)




PID

ALICE LAYOUT
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Particle Identification / 1

® r, K, p identified in large acceptance (27 * 1.8 units 1) via a combination of dE/dx
in Si and TPC and TOF from ~100 MeV to 2 (p/K) - 3.5 (K/p) GeV/c

®Electrons identified from 100 MeV/c to 100 GeV/c (with varying efficiency)
combining Si+TPC+TOF with a dedicated TRD

®In small acceptance HMPID extends PID to ~5 GeV

®Photons measured with high resolution in PHOS, counting in PMD and EM energy
flow in EMCAL

TPC+ITs I K

. K/p
(dE/dx) W L ein
TOF o/ I K "
HMPID . ok
(RICH) Kip
0 1 2 3 4 5p (GeV/c)
TRD o i -
PHOS y [ - ]

1 10 100 p (GeV/c)



Particle Identification / 1

* A are identified reconstructing the decay vertex for
transverse momenta in the range 500 MeV/c to ~ 10

GeV/c
® Same for K° in the range 250 MeV/c to ~ 10 GeV/c

* Under study is the identification of K via the
detection of the decay vertex (kink): the method is
expected to have reasonable efficiency from 300
MeV/c up to ~ 10 GeV/c

* Also under study is the possibility of identification
of n,( K, p) in the relativistic rise region using dE/dx in
both TPC and TRD

La Thuile, 15/3/2003 Massimo Masera



DOUBLE STACK OF 0.5 mm GLASS
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High Momentum Particle Identification

container
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- ’ RICH charged particle
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10°

10°

10

multiplicity, pseudorapidity reconstruction

Hadronic Observables - I

particle spectra (single event)

|[Reconstructed transverse momentum
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Reconstruct (dN/dy~6k):
~ 30 K% central event

~ 3 A/central event



H.O. ITT -Secondary vertices and hard
probes: hadronic charm

Secondary vertex finding capabilities + PID can be exploited to detect
processes as D’>K* and D+ >K  n* n* (and chg. conjugates)

~107 Pb-Pb events
S/\N(S+B)=37

v ~140 DY/ central event

v D9>K-n* has been studied

v ~0.5 D9>K-* accepted/event

v Mass 1.864 GeV/c? ct=124 um

v’ Large uncertainties: indirect
measurements at SPS

(excess A-A w.r.t. p-p)

v Also important for J/y normalisation
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. lepton detection

ALICE LAYOUT
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Transition Radiation Detector

edlon—+(,9«n<0.9
* Large: 800 m2 - high granularity
R (1.2 M channels)
| lawss CELid. for pl GeV/e
i *El. Trigger (L1) for p>3 GeV/c

1 |'|||II
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gy il fiber
5 radiator stack radiator tO
(100 polypropylene foils) “ ill du ce TR
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Dimuon Spectrometer

» Study the production of the J/V,
¥',Y,Y and Y" decaying in 2

| muons, 2.4<m<4

| - Resolution of 70 MeV at the J/¥
~ and 100 MeV at the Y

S stations of high granularity
pad tracking chambers, for
over 1M readout channels

X

¥
T
Yy

Tracking
chambers

Absorber
Complex absorber/small
angle shield system to
minimize background
(90 cm from vertex)

Trigger chambers

Magpet Filter




Heavy quarkonia in ALICE

 Identification of charmonia and bottonomia states
through their dilepton decay channel both in the e*e-
and in the u* pn - channel

* Large background from open charm & bottom
- v produced also via 6 decays

* important to have good mass resolution (~ 1%) to separate the
different states => perform detailed spectroscopy

\ TPC
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(-0.9 <1 <0.9)

(2.5<n<4)
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e*e” channel: J/vy from b

ct = 300+400 um for D and B mesons

B(D) > e+ X The d, of the electron can be measured wu’rh

the ITS

1
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dy < cut > resonances
dy > cut > D,B mesons
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Massimo Masera
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1)

2)

3)

4)

5)
6)

Jets via leading particle in TPC

Find the leading

par‘TICIZ Alice event: 1, Run:0
If Ieading par"ricle hGS a [ Nearticles = 906 Nhits = 56062

pt. ..> 4 6eVuseitasa
seed for jet.

Particles with pt> 2
GeV are associated to
the jet if
AR=V(Ad2+AN2) < 0.7
Calculate sum of
momentum vectors.
Mark all used particles.
Repeat until no more
seeds are found.




Jet 30<E < 50 i

using all tracking detectors +
the TRD triggering capability
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= 3042
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Jets in ALICE

Jet 50<E < 80 |
1"

Jet
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Mean = 3 546
s | 33
Under= 0

Over = 1
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::: 120-170 GeV under= g

Jet
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Use high-p; leading particle as seed

Measure:

Pr > 2GeV/c

fragmentation p distribution, particle
composition, p- y correlations,
multiplicity correlations, ...

(==

Example: evolution of
hard fragmentation
as EJ¢ increases

Jet Fragment p; Distribution in

Jet Cone

Normalized background p;
"distribution in Jet Cone



Jet Rates in Central ALICE (|n]<.9)

=
N S —
:‘F \L PythTaMTeV
g N ‘ Reasonable rate up
' RN to E;. ~200 GeV
Pb Pb rates:
p: jet > | jets/event  accepted with TRD jet trigger
(GeV/c) jets/month . Sies wive THy tri
5 35 102 4.9 100 1rst studies give 1Hz trigger
rate for
50 /.710 1.5 107 central PbPb collisions and p,
100 3.5 103 8.1 10° jet>100 GeV/c
150 4.8 104 1.2 10° real jets triggers 0.7/s
200 1.1104 2.8 104




Software

+ All the simulation resuts shown here have been
produced by means of the ALICE computing
framework, AliRoot, which is based on ROOT®) and is
entirely written in C++ but is able to use legacy cose
ritten in Fortran (Geant 3, event generators)

* The massive production of events is done on a
distributed network af big and small computing
centers via our GRID interface:AliEn (Alice
ENvironment)

Data challenges are regularly scheduled to be able to
cope with the very demending experimental conditions
(1.2 GB/s)

La Thuile, 15/3/2003 Massimo Masera ) http://root.cern.ch
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ALICE GRID |s ’rher'e ALIEN

Production
ROUND TAG COMMENT STATUS COMMAND Statistics

200101 V303 Test-Fownd TESTIMNG  AlRoot view Chart
200102 W30e FPE-Producaon CONE AliBoot view Chart
200201 V30703 EMCAL-Producton CCONE AliRoot view Chart
200202 V30803 Proton-proton minmom bias tor chaom DONE AliFBoot vieawr Chart
200202 V303 Eev(l PPR productdon STARTED AlRoot viewr Chart
200204 V303 Eev0l p-pmintroonmn bias CoME AliFoot viesr Chart

http://alien.cern.ch/Alien

28 sites
configured, at
present ~14
contributing with
CPU cycles

4 sites providing
mass storage
capability

Tests carried on
In more sites,
including Merida,
MX

Several more

expressed
Interest



Summary

v Heavy Ions at Vs=5.5 TeV: a step forward to the QGP
physics

v New region of the QCD phase diagram: small pz and high T
v New observables: Y and its possible suppression

v Availability of direct partonic probes: jets

v’ The accelerator and the apparats are being built

v The software tools for the analisys are getting ready

v'A rich harvest of Physics is ahead of us: the LHC is a
great place where to do Heavy Ion Physics!

La Thuile, 15/3/2003 Massimo Masera
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