Perspectives of the ALCE Experiment

Massimo Masera for the ALICE Collaboration

LES RENCONTRES DE PHYSIQUE DE LA VALLEE D'AOSTE

9-15 March, 2003 La Thuile

Pb ions since 1995 @ 158 Gev/nucleon...

The Heavy Ion programme at the SPS is still active: NA60 will study dimuon at low mass with high mass resolution

NA49 experiment: A Pb-Pb event (1996)

Experiments at SPS, RHIC and LHC share the common purpose of probing and studying the phase transition to $\ensuremath{\mathsf{QGP}}$

color code \Rightarrow energy loss

A central (real!) Au-Au event STAR @ ~130 GeV/nucleon CM energy

The experimental challenges posed by the currently available Heavy Ion collisions are evident!

Results from RHIC were presented by S.White on Wednesday

The Large Hadron Collider

- The LHC is the latest of a series of successful accelerators
- Main orders for LHC components are now out, the construction plan seems solid, so now the target date should not change anymore

The Large Hadron Collider /2

Scheduled start: 2007

 $\sqrt{s_{pp}} = 14 \text{ TeV}$ $\sqrt{s_{PbPb}} = 5.5 \text{ TeV}$ ($\Delta \eta \sim 17$) Note : \sqrt{s} limited by needed bending power. LHC : 1232 superconducting dipoles with

B = 8.4 T working at 1.9 Kelvin (the largest cryogenic system in the world)

Overall view of the LHC experiments.

One HI experiment with a pp program: ALICE One pp experiment with a HI program: CMS

One pp experiment considering HI: ATLAS

Who/what is ALICE ?

2007 is far.. However ALICE is already in its installation phase: here the magnet plugs

ready for the experiment to move in!

The ALICE

Magnet:

Experimental conditions @ LHC

- pp commissioning: April 2007
- Wish list of the HI community for the LHC
 - Initial few years (1HI 'year' = 10° effective s, ~like at SPS)
 - 2 3 years Pb-Pb $2 \sim 10^{27} \text{ cm}^{-2} \text{s}^{-1}$
 - 1 year p Pb 'like' (p, d or α) \mathcal{L} ~ 10²⁹ cm⁻²s⁻¹
 - 1 year light ions (eg Ar-Ar) 2 ~few 10²⁷ to 10²⁹ cm²s⁻¹ ALICE is limited by pileup in TPC:
 - reg. pp run at \sqrt{s} = 14 TeV \angle ~ 10²⁹ and < 3×10³⁰ cm⁻²s⁻¹
 - Later: different options depending on Physics results
- Heavy Ion is a part of the LHC initial program, early pilot run expected by end of 2007

Why Heavy Ion collisions

- Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature (T over 100,000 times higher than in the core of the Sun!) and to study its properties
- At such densities, hadrons are so closely packed that they interpenetrate; novel physics phenomena are likely to appear
- QCD predicts that under such conditions a <u>phase transition</u> from a system composed of colorless hadrons to a <u>Quark-Gluon Plasma</u> (QGP) should occur (the QGP should live for a very short time, about 10⁻²³s, or a few fm/c).
- Possible key to understand Confinement
- Also path to the region of highest energy collisions in Cosmic Rays (Accelerators start competing with the Universe!)

- A skier (quark?) is confined inside snow patches (hadrons?)

Temperature

.. goes up

- a skier (quark?) can move freely over long distances...

.. this way

L. Maiani, 2000

Lattice QCD calculations

In lattice QCD, non-perturbative problems are treated by discretization on a space-time lattice.

• $T_c \cong 170 \text{ MeV}$ $\varepsilon_c \cong 0.6 \text{ GeV/fm}^3$

 The limit of an ideal
 Stefan Boltzmann gas of quarks and gluons is not reached → non
 perturbative phenomena are still relevant

La Thuile, 15/3/2003

Why Heavy Ions at the LHC?

New or more important at the LHC w.r.t. SPS and RHIC: * Vanishing net baryon density ($\mu_B \rightarrow 0$) Closer to lattice QCD assumptions, closer to Early Universe High energy density \rightarrow limit of an "ideal" gas of QCD quanta Stronger thermal radiation Hard probes:

eavy flavours

ets and jet quenching

Dominant processes in particle production SPS: soft RHIC: soft and semi-hard LHC: semi-hard and hard

Massimo Masera

Central collisions	SPS	RHIC	LHC	
s ^{1/2} (GeV)	17	200	5500	
dN _{ch} /dy	500	650	3-8 ×10 ³	
ε <mark>(GeV/fm³)</mark>	2.5	3.5	15-40	1)
V _f (fm³)	10 ³	7 ×10 ³	2×10 ⁴	2)
τ _{QGP} (fm/c)	<1	1.5-4.0	4-10	3)
τ ₀ (fm/c)	~1	~0.5	×0.2	

1) $\varepsilon_{LHC} > \varepsilon_{RHIC} > \varepsilon_{SPS}$ 2) $V_f^{LHC} > V_f^{RHIC} > V_f^{SPS}$ 3) $\tau_{LHC} > \tau_{RHIC} > \tau_{SPS}$

• The LHC is the ideal place to study the QGP:

- hotter bigger -longer lived
- ~ 10⁴ particles per event: Event by event physics

Diagnostic tools the experimental challenge: to observe in the final state the signatures of the phase transition

Low-pt "soft" probes

thermal particle production from QGP

- single particle spectra
- two particle correlations
- particle abundances and ratios
- flow patterns
- E_†

Caveat: pure hadronic effects can mimic expected QGP signaturures

Therefore one needs:

 to establish experimentally a solid baseline studying systems where no QGP is expected (e.g. pp, pA) and use these data as a reference

High-p_t "hard" probes

ALICE Physics goals / 0

- ALICE has to cover in one experiment what at SPS was studied by 6-7 different experiments and at RHC by 4
- ALICE aims to study the most wide spectrum of signals covering in a thorough way the dynamics of the collision

ALICE Physics goals / 1

Global observables:

*****Multiplicities, η distributions

Degrees of freedom as a function of T:

* hadron ratios and spectra, dilepton continuum, direct photons

Early state manifestation of collective effects: **elliptic flow**

Energy loss of partons in quark gluon plasma:
 *jet quenching, high pt spectra, open charm and open beauty

Study deconfinement:

charmonium and bottonium spectroscopy

• Study chiral symmetry restoration:

* neutral to charged ratios, resonance decays

ALICE Physics goals / 2

Detect fluctuation phenomena - critical behavior:
* event-by-event particle composition, spectra
Measure the geometry of the emitting source:
* HBT, impact parameter via zero-degree energy flow
Study pp collisions in the new energy domain (complementary w.r.t ATLAS and CMS)
Search for: Centauro events, strangelets

NEEDS

- > Large acceptance
- Good tracking capabilities
- Selective triggering
- Excellent granularity

- Wide momentum coverage
- > P.I.D. of hadrons and leptons
- Good sec. vertex reconstruction
- Photon Detection

Use a variety of experimental techniques!

Measure the energy of the spectators, mostly individual neutrons and protons

La Thuile, 15/3/2003

Massimo Masera

		Proton ZDC (ZP)	Neutron ZDC (ZN)	EM ZDC
Dimensions (cm ³)		12x21x150	7x7x100	7x7x21
Absorber		brass	W-alloy	lead
Fibre angle wrt LHC axi	is	0 ⁰	0 ⁰	45 ⁰
Fibre Ø (µm))	550	365	550

Tracking: the major challenge for ALICE

Event display for a central Pb-Pb collision. Tracking in the central brrel involves TOF, TRD, TPC, ITS.
 Track finding is carried out in the TPC

>N_{ch}(-0.5< η <0.5)=8000 >Only a slice of $\Delta\theta$ =2° is shown

La Thuile, 15/3/2003

ALICE LAYOUT: TRACKING

Assembly of the TPC outer field cage and end plates

The Inner Tracking System

- 6 Layers, three technologies (keep occupancy ~constant ~2% for max mult)
 - Silicon Pixels (0.2 m², **9.8 Mchannels**)
 - Silicon Drift (1.3 m², **133 kchannels**)
- See E. Crescio's talk on SDD tomorrow afternoon
- Double-sided Strip Strip (4.9 m², **2.6 Mchannels**)

ITS: Many electronics developments (all full-custom designs in rad. tol., 0.25 µm process)

ALICE PIXEL CHIP

System testing

Tracking in the central barrel

> $dN/d\eta|_{max}$ =8000 \implies tracking in the central barrel is a great challenge !

➢Requirements (TPC+ITS):

- *****Good efficiency (> 90%) for $p_T > 0.2$ GeV/c @ 0.4 Tesla magnetic field
- Momentum resolution (dp/p) ~ 1÷2% at low momenta and few % at 5 GeV/s
- ✤Good vertexing capabilities: V0, charm✦Particle identification (dE/dx, kinks)

Tracking solutions

Tracking finding and fitting: Kalman filtering
 Track seeding: outer TPC (lower track density)
 Tracks prolonged to ITS
 In ITS: Kalman + vertex constraint (σ_z=100 µm)
 From ITS: back propagation to TRD and TOF

Needs

Primary vertex position measurement

Vertex determination

 Z_v is estimated starting from a correlation between the first 2 ITS layers (PIXEL) in a narrow azimuthal ($\Delta \phi$) window (here high multiplicity HELPS!)

The coordinates in the bending plane are measured in a similar way. More precise results can be obtained by using the reconstructed tracks

Z_v La Thuile, 15/3/2003

Massimo Masera

Vertex determination /2

Pb-Pb $\rightarrow \sigma_z \cong 5 \div 10 \ \mu m$; $\sigma_x = \sigma_y \cong 25 \ \mu m$ p-p $\rightarrow \sigma_z \cong 100 \ \mu m$; $\sigma_x = \sigma_y \cong 55 \ \mu m$ with tracks No dependence on B

Resolutions for pp with tracks

Non diffractive pp collisions generated with Pythia (CTEQ4 LO str. Functions). Steps: Z coord. found with pixels; coordinate finding from the point of closest approach of reconstructed tracks; coordinate fitting \rightarrow reasonable error estimate

Display of reconstructed tracks in ITS.

- ✓ Clusters are red dots
- Cyan lines: primary tracks
- Magenta lines: secondary tracks

Matching with TRD and TOF

Tracks are back-propagated to the outer detectors: TRD and TOF

- The fist results on the full chain of reconstrunction have been presented in January 2003
- The matching efficiency TRD-TOF is ~90%

ALICE LAYOUT: PID

Particle Identification / 1

π, K, p identified in large acceptance (2π * 1.8 units η) via a combination of dE/dx in Si and TPC and TOF from ~100 MeV to 2 (p/K) - 3.5 (K/p) GeV/c
Electrons identified from 100 MeV/c to 100 GeV/c (with varying efficiency) combining Si+TPC+TOF with a dedicated TRD
In small acceptance HMPID extends PID to ~5 GeV
Photons measured with high resolution in PHOS counting in PMD and EM energy

•Photons measured with high resolution in PHOS, counting in PMD and EM energy flow in EMCAL

Particle Identification / 1

- $\,$ Λ are identified reconstructing the decay vertex for transverse momenta in the range 500 MeV/c to \sim 10 GeV/c
- Same for K^0 in the range 250 MeV/c to ~ 10 GeV/c
- Under study is the identification of K via the detection of the decay vertex (kink): the method is expected to have reasonable efficiency from 300 MeV/c up to ~ 10 GeV/c
- Also under study is the possibility of identification of π ,(K, p) in the relativistic rise region using dE/dx in both TPC and TRD

Time Of Flight

for π , K, p PID π , K for p <2 GeV/c p for p <4 GeV/c -0.9 < η < 0.9 full

High Momentum Particle Identification

7 modules, each ~1.5 x 1.5 m^2

STAR data

x (pads)

Particle Identification performance

Hadronic Observables - I

Hadronic Observables -II

~ 30 K⁰/central event ~ 3 Λ/central event

H.O. III - Secondary vertices and hard probes: hadronic charm

Secondary vertex finding capabilities + PID can be exploited to detect processes as $D^0 \rightarrow K^-\pi^+$ and $D^+ \rightarrow K^-\pi^+$ (and chg. conjugates)

ALICE LAYOUT: lepton detection

Dimuon Spectrometer

- Study the production of the J/Ψ , Ψ' , Y, Y' and Y'' decaying in 2 muons, 2.4 < η < 4
- Resolution of 70 MeV at the J/ Ψ and 100 MeV at the Y

Heavy quarkonia in ALICE

- Identification of charmonia and bottonomia states through their dilepton decay channel both in the e^+e^- and in the μ^+ μ^- channel
- Large background from open charm & bottom
- $\cdot \psi$ produced also via *b* decays
- important to have good mass resolution (~ 1%) to separate the different states => perform detailed spectroscopy

$\mu^+ \mu^-$ channel

• $\sigma_{\rm M}$ =94.5 MeV/c² • Separation of $\Upsilon, \Upsilon', \Upsilon''$ Total efficiency Expected statistics (significance - 1 yr):

	central	min. bias
J/ψ	310	574
ψ'	12	23
Υ	39	69
Υ'	19	35
Υ"	12	22
from	min. bia	s events
- 8k)	and ~700	Ok J/w /vr

e⁺e⁻ channel: J/ψ from b

Jets via leading particle in TPC

- 1) Find the leading particle
- 2) If leading particle has a pt_{max} > 4 GeV use it as a seed for jet.
- 3) Particles with pt> 2 GeV are associated to the jet if $\Delta R = \sqrt{(\Delta \phi^2 + \Delta \eta^2)} < 0.7$
- 4) Calculate sum of momentum vectors.
- 5) Mark all used particles.
- 6) Repeat until no more seeds are found.

Jets in ALICE using all tracking detectors + the TRD triggering capability

Use high- p_T leading particle as seed Measure: $p_T > 2 \text{ GeV/c}$

fragmentation p_T distribution, particle composition, p_T - y correlations, multiplicity correlations, ...

> Example: evolution of hard fragmentation as E_T^{jet} increases

Jet Fragment p_T Distribution in Jet Cone Normalized background p_T

Jet Rates in Central ALICE ($|\eta|$ <.9)

Reasonable rate up to E_T ~200 GeV

Pb Pb rates:

p_t jet > (GeV/c)	jets/event	accepted jets/month
5	3.5 10 ²	4.9 10 ¹⁰
50	7.7 10-2	1.5 10 ⁷
100	3.5 10 ⁻³	8.1 10 ⁵
150	4.8 10-4	1.2 10 ⁵
200	1.1 10-4	2.8 10 ⁴

with TRD jet trigger

First studies give 1Hz trigger rate for central PbPb collisions and p_t jet > 100 GeV/c

real jets triggers0.7/sfalse triggers0.3/s

Software

- All the simulation resuts shown here have been produced by means of the ALICE computing framework, AliRoot, which is based on ROOT^(*) and is entirely written in C++ but is able to use legacy cose ritten in Fortran (Geant 3, event generators)
- The massive production of events is done on a distributed network af big and small computing centers via our GRID interface: AliEn (Alice ENvironment)
- Data challenges are regularly scheduled to be able to cope with the very demending experimental conditions (1.2 GB/s)

La Thuile, 15/3/2003

Massimo Masera

(*) http://root.cern.ch

ALICE GRID is there: ALIEN

Production

Edit +

•

ROUND	TAG	COMMENT	STATUS	COMMAND	Statistics
2001-01	V3.05	Test-Round	TESTING	AliRoot	view Chart
2001-02	V3.06	PPR-Production	DONE	AliRoot	view Chart
2002-01	V3.07.03	EMCAL-Production	DONE	AliRoot	view Chart
2002-02	V3.08.03	Proton-proton minimum bias for charm	DONE	AliRoot	view Chart
2002-03	V3.08.Rev.01	PPR production	STARTED	AliRoot	view Chart
2002-04	V3.08.Rev.01	p-p minimum bias	DONE	AliRoot	view Chart

http://alien.cern.ch/Alien

- 28 sites configured, at present ~14 contributing with **CPU** cycles
- 4 sites providing mass storage capability
- Tests carried on in more sites, including Merida, MX
- Several more expressed interest

Summary

- \checkmark Heavy Ions at $\sqrt{s}\text{=}5.5$ TeV: a step forward to the QGP physics
- \checkmark New region of the QCD phase diagram: small μ_{B} and high T
- \checkmark New observables: Υ and its possible suppression
- ✓ Availability of direct partonic probes: jets
- \checkmark The accelerator and the apparats are being built
- ✓ The software tools for the analisys are getting ready

✓A rich harvest of Physics is ahead of us: the LHC is a great place where to do Heavy Ion Physics!

La Thuile, 15/3/2003

Massimo Masera