Rare B decays and direct CP violation at

Sandrine Laplace

on behalf of the BABAR collaboration

Les Rencontres de Physique de la Vallée d'Aoste March 9-15, 2003

Rare B decays

Decays that are suppressed by either:

Small CKM matrix element:

 $\left| V_{ub} / V_{cb} \right| \approx \lambda$

La Thuile, March 9-15, 2003

Sandrine Laplace

d

d

s.d

Motivation

Constrain SM

- Time-dependent CPV: See R.Faccini's talk sin2α: $B \rightarrow \pi\pi, \rho\pi$, sin2β: $B \rightarrow \eta$ 'K, Φ K*
- Rates: |V_{td} / V_{ts}|: B→K^{*}γ, ρ γ
- QCD: HQET parameters: b→s γ spectrum

$$B^{0}, B^{+} \xrightarrow{A_{f}} f \neq \overline{B}^{0}, B^{-} \xrightarrow{\overline{A}_{\overline{f}}} \overline{f}$$

$$A_{f} = \sum_{k} A_{k} e^{i\delta_{k}} e^{i\phi_{k}} \qquad \overline{A}_{\overline{f}} = \sum_{k} A_{k} e^{i\delta_{k}} e^{-i\phi_{k}}$$

$$Strong phase \qquad Weak phase (CP-conserving) \qquad Weak phase (CP violating)$$

$$|A_{f}|^{2} - |\overline{A}_{\overline{f}}|^{2} = -4A_{1}A_{2}\sin(\delta_{1} - \delta_{2})\sin(\phi_{1} - \phi_{2})$$

La Thuile, March 9-15, 2003

Particle identification: Detection Of Internally Reflected Cherenkov light

La Thuile, March 9-15, 2003

Kinematic variables at a B factory, Continuum background rejection

e⁺e⁻→Y(4S) →BB

B produced almost at rest in Y(4S) c.m.s.

Kinematics:

Use beam energy to improve resolution: energy and momentum conservation gives

La Thuile, March 9-15, 2003

La Thuile, March 9-15, 2003

Exclusive branching fractions of B⁺ \rightarrow K⁺ $\pi^{-}\pi^{+}$

La Thuile, March 9-15, 2003

small CKM matrix

element (Vub)

Sandrine Laplace

NEW

small CKM matrix element (Vub)

Br of B⁺ $\rightarrow \rho^{0}\rho^{+}$, $\rho^{0}K^{*+}$

Interest:

B→ρρ modes: angle α **B**→ρ**K***: dominated by penguin ?

Reconstruction:

► K^{*+}→K⁺π⁰, K⁰π⁺

- (charmed) B bkg accounted for in fit
- average efficiency over transverse and longitudinal components

$$Br(B^{+} \to \rho^{0} \rho^{+}) = (9.9^{+2.6}_{-2.5} \pm 2.5).10^{-6}$$
$$Br(B^{+} \to \rho^{0} K^{*+}) = (7.7^{+2.1}_{-2.0} \pm 1.4).10^{-6}$$

La Thuile, March 9-15, 2003

Isospin analysis in $B \rightarrow \pi \pi$

Amplitude relations (isospin symmetry):

La Thuile, March 9-15, 2003

small CKM matrix element (Vub)

small CKM matrix element (Vub)

Summary of B \rightarrow hh (h= π ,K) decays

			L=81.8	fb ⁻¹
Mode	N _{events}	Br (10 ⁻⁶)	A _{CP}	
$B^0 o \pi^+ \pi^-$	157±19	4.7 ±0.6 ±0.2		
$B^0 \rightarrow K^+ \pi^-$	589 ±30	17.9 ±0.9 ±0.6	-0.102 ±0.050 ±0.016	L
$B^0 \rightarrow K^+ K^-$	<15.9	<0.6 (90% CL)		
$B^{+} \rightarrow \pi^{+} \pi^{0}$	125 ±22 ±10	5.5 ±1.0 ±0.6	-0.03 ±0.18 ±0.02	L
$B^{\scriptscriptstyle +} ightarrow K^{\scriptscriptstyle +} \pi^0$	239 ±22 ±6	12.8 ±1.2 ±1.0	-0.09 ±0.09 ±0.01	L
$B^{\scriptscriptstyle +} ightarrow K^0 \pi^{\scriptscriptstyle +}$	172 ±17 ±9	17.5 ±1.8 ±1.3	-0.17 ±0.10 ±0.02	
$B^0 \rightarrow K^0 \pi^0$	86 ±13 ±3	10.4 ±1.5 ±0.8	0.03 ±0.36 ±0.09	L
$B^0 \rightarrow \pi^0 \pi^0$	23 ±10	<3.6 (90% CL)		L
$B^+ \rightarrow K^+ K^0$	<10	<1.3 (90% CL)		

La Thuile, March 9-15, 2003

Sandrine Laplace

s.d

Radiative penguin

Semi-inclusive $b \rightarrow s\gamma$

Enter theoretical

inclusive decays

predictions of

V_{ub}, V_{cb} from

L=20.7 fb⁻¹

"Semi-inclusive" = K + 1 to 3 pions
 E_γ obtained from hadronic invariant mass
 Fit E_γ spectrum moments to extract HQET parameters:

$$m_{B} = m_{b} + \overline{\Lambda} - \frac{\lambda_{1} + 3\lambda_{2}}{2m_{b}} + \dots$$

 $Br(b \rightarrow s\gamma) = (4.3 \pm 0.5(stat) \pm 0.8(syst) \pm 1.3(model)).10^{-4}$

200 $B [10^{-6}] / 0.2 \text{ GeV/c}^2$ $m_{\rm h} = 4.79 \text{ GeV/c}^2$, $\lambda_1 = -0.24 [\text{GeV/c}^2]^2$ **BABAR** 180 $m_{\rm h} = 4.65 \text{ GeV/c}^2$, $\lambda_1 = -0.48 [\text{GeV/c}^2]^2$ 160 Data 140 120 100 80 60 40 201.5 2.5 2 1 M_{Had} [GeV/c²]

 $\overline{\Lambda} = 0.37 \pm 0.09 (\text{stat}) \pm 0.07 (\text{syst}) \pm 0.10 (\text{model}) \text{ GeV/c}^2$ $m_b = 4.79 \pm 0.08 (\text{stat}) \pm 0.10 (\text{syst}) \pm 1.3 (\text{model}) \text{ GeV/c}^2$ $\lambda_1 = -0.24^{+0.03}_{-0.04} (\text{stat}) \pm 0.02 (\text{syst})^{+0.15}_{-0.21} (\text{model}) \left[\text{ GeV/c}^2 \right]^2$

 $\overline{\Lambda}$ energy of the light degrees of freedom

- λ_1 · Kinetic energy of b quark Fermi motion in B meson
- . Hyperfine chromo-magnetic \rightarrow (known from B-B* mass spliting)

 $\left\langle \boldsymbol{E}_{\boldsymbol{\gamma}}^{n}\right\rangle = f\left(\overline{\Lambda}, \lambda_{1}, \lambda_{2}\right)$

Ligeti, Luke, Manohar, Wise, PRD 60,034019(1999) Kagan and Neubert, EPJ C7,5(1999)

La Thuile, March 9-15, 2003

La Thuile, March 9-15, 2003

Radiative penguin

Fully inclusive $b \rightarrow s\gamma$

Br and A_{CP} in $B \rightarrow \eta' K'$

L=81.9 fb⁻¹

- Reconstruct $\eta^{i} \rightarrow \eta \pi^{+} \pi^{-}$, $\rho^{0} \gamma$ ■ Main bkg: continuum
- Small B bkg to ρ⁰γ

Gluonic

penguin

$$-0.04 < A_{CP}(B^+ \rightarrow \eta^3 K^+) < 0.11 @ 90\% CL$$

$$\frac{\Gamma\left(B^{+} \to \eta' \mathcal{K}^{+}\right)}{\Gamma\left(B^{0} \to \eta' \mathcal{K}^{0}\right)} = 1.22 \pm 0.13_{stat} \pm 0.05_{syst} \pm 0.05_{\tau(B^{+},B^{0})}$$

Compatible with isospin symmetry

Time-dependent CP analysis: $sin2\beta$ in the SM See R.Faccini's talk

Sandrine Laplace

NEW

this

vear !

Br and A_{CP} in $B \rightarrow \Phi K^*$

Reconstruct φ→K⁺K⁻, K^{*0}→K⁺π⁻, K⁰π⁰ K^{*+}→K⁺π⁰, K⁰π⁺
Main bkg: continuum
Low B bkg because φ is narrow (veto B →D(Kπ,Kππ)π)

L=81.9 fb⁻¹

Gluonic

penguin

Vector-vector decay: not a CP eigenstate

angular analysis to separate CP-odd/even (for now, simplified due to low statistics: separate longitudinal component)

 $Br\left(B^{0} \to \phi K^{*0}\right) = \left(11.1^{+1.3}_{-1.2} \pm 1.1\right).10^{-6}$ $Br\left(B^{+} \to \phi K^{*+}\right) = \left(12.1^{+2.1}_{-1.9} \pm 1.5\right).10^{-6}$ $\Gamma_{L} / \Gamma\left(B^{0} \to \phi K^{*0}\right) = 0.65 \pm 0.07 \pm 0.04$ $\Gamma_{L} / \Gamma\left(B^{+} \to \phi K^{*+}\right) = 0.46 \pm 0.12 \pm 0.05$ $A_{CP}\left(B^{0} \to \phi K^{*0}\right) = 0.04 \pm 0.12 \pm 0.02$ $A_{CP}\left(B^{+} \to \phi K^{*+}\right) = 0.16 \pm 0.17 \pm 0.04$

NEW

See R.Faccini's talk

La Thuile, March 9-15, 2003

Search for $B^+ \rightarrow K^+ \nu \overline{\nu}$

La Thuile, March 9-15, 2003

EW penguin

Summary of direct CP violation measurements

La Thuile, March 9-15, 2003

Conclusions

New Physics: no smoking gun yet (watch η'K...)

SM contraints:

Theory of B decays: Determination of HQET parameters

✓CKM matrix:

 $B \rightarrow \rho \gamma / B \rightarrow K^* \gamma$: sensitive to $|V_{td}/V_{ts}|$ complementary to B_d/B_s mixing

B $\rightarrow \pi\pi$ isospin analysis:

The near future (500 fb⁻¹):

Mode	N _{events}	Physics case
Β→Χ _s γ	11 K	V _{ts} , HQET
Β→Κ *γ	6 K	V _{ts}
$B \rightarrow \tau \nu$	17	f _B V _{ub}
Β→μν	8	f _B V _{ub}
B → K ^(*) I ⁺ I ⁻	200	A _{FB}

Projected luminosity: 500 fb⁻¹ in 2006 > 1 ab⁻¹ by the end of the decade

La Thuile, March 9-15, 2003

Sandrine Laplace

 $|V_{td}/V_{ts}| < 0.36$

 $|\alpha - \alpha_{eff}| < 51^{\circ}$

@ 90%CL