Recent Run II Electroweak and QCD Results from DØ

Robert Kehoe Michigan State University

for the DØ collaboration

3/12/03 Les Recontres de Physique de la Vallée d'Aoste

. Measurement of the Dijet Mass Cross Section

- Measurement of the $Z \rightarrow \mu\mu \sigma^*BR$
- Search for Z' in Dielectron Decays

Pipelined 3-level trigger

current L1 trigger rate	1 kHz
"" L2 trigger rate	0.6 kHz
"" L3 trigger rate	50 Hz

current operating efficiency: 80% - 85%

DØ at the Tevatron

a multipurpose collider detector:

Tracking

- silicon vertex detector
- fiber tracker

Calorimetry

- preshowers
- U/LAr calorimeters

Muon

• drift tubes and scint.

New Tracking for DØ

Silicon Microstrip Tracker (SMT)

- 840k channels
- 4 layer barrels 3D tracking
- detached vertex detection
 - b-taggingtriggering
- fully commissioned

2T superconducting solenoid

momentum, charge

1

New Tracking for DØ: CFT

- Central Fiber Tracker
- 77k channels with VLPC readout
 - first sci-fi/VLPC tracker at collider

track

Х

DCA: Distance of

Closest Approach

- VLPC's
 - 9K operating temp.
 - 85% QE, excellent S/N
- 8 layers fiber doublets
- tracking trigger
- fully operational
- E/p measurement
 - improved calibration

Forward Proton Detector

Scintillating fiber detectors in Roman pots near beam used to tag protons and anti-protons **EVENT** beam beam **▲**up1 xp_\16 v1 🔺 х1 u20 **Proton Detector 2** vp20 **Proton Detector 1** $\xi (= \Delta p/p)$ distribution for 30 a sample of clean elastic events 25 20 **Commissioning in** 15 progress, integration 10 with central detector 5 in summer 0 0.15 <u>n</u> 2 -0.15 -0.1-0.05 0.05 0.1

Robert L. Kehoe - Michigan State University

QCD/Electroweak from DØ: 1

xsi-data-reco

Dijet Mass Cross Section

Jet Energy Scale

$$E_{corr} = (E_{uncorr} - O) / R * S$$

Trigger Selection

• four triggers utilized

Energy Resolutions

- use dijet events in data
 - same sample as M_{ii} analysis
 - asymmetry measurement

$$A = \frac{p_{T}^{jet1} - p_{T}^{jet2}}{p_{T}^{jet1} + p_{T}^{jet2}}$$

- corrected for unfound third jets
- particle jet resolution corrected for
- use to determine dijet mass resolution
 - smear PYTHIA events in mass bins
 - gaussian fit to $\Delta M_{ij} / M_{ij}$ in each bin
 - fit to

$$\frac{\sigma_{M_{JJ}}}{M_{JJ}} = \sqrt{\frac{N^2}{M_{JJ}^2} + \frac{S^2}{M_{JJ}} + C^2}$$

- determine unsmearing correction

Robert L. Kehoe - Michigan State University

^{3/12/2003}

Observed Cross Section

• calculated by

$$\left\langle \frac{\mathrm{d}\sigma}{\mathrm{d}M_{JJ}} \right\rangle = \frac{N_{evt}}{L} \frac{1}{\varepsilon_{eff}} C_{unsmear} \frac{1}{\Delta M_{JJ}}$$

- cut efficiencies
 - estimated from data
 - vertex quality:
 - jet quality:
 ~97%
- cross section
 - with total error
 - luminosity error
 - additional 10%
 - fully correlated bin-to-bin and not shown
 - compare to NLO theory
 - CTEQ6 pdf

Robert L. Kehoe - Michigan State University

Comparison to Theory

- agrees within uncertainties
- main uncert.: jet energy scale, P_1 resolution iet quality

Robert L. Kehoe - Michigan State University

Dimuon Backgrounds

Robert L. Kehoe - Michigan State University

- cosmics negligible
- heavy flavor (
 - compare dimuon events
 - two isolated muons
 - one isolated muon
 - two samples agree well
 - < 1% non-isolated muons</pre>
 - \therefore 1% ± 1% BG
- $Z \rightarrow \tau \tau \rightarrow \mu \mu$
- Drell-Yan
 - PYTHIA + fast detector simulation
 - Z and Z/γ^*
 - muon resolution tuned to data
 - correction factor = $N_Z / N_{Z,\gamma}$

Measured $\sigma^*BR(Z \rightarrow \mu\mu)$

calculation of efficiency

$$\epsilon_{\rm Z} = \epsilon_{\rm MC}^{\rm eff} \times \epsilon_{\rm fz} \times (2\epsilon_{\rm L2} - \epsilon_{\rm L2}{}^2) \times \epsilon_{\rm opposite_q} \times \epsilon_{\rm isol} \times \epsilon_{\rm cosmic}$$

contributions

- contributes most to error on cross section
- components:
 - effic. error
 - Monte Carlo 0.403 0.012
 - Level 1 muon

0.912

- $\sigma * Br \stackrel{0.017}{=} 263.8 \pm 6.6 \text{ (stat)} \pm 17.3 \text{ (sys)} \pm 26.4 \text{ (lum) pb}$
- 0.909

0.822

track efficiency

Robert L. Kehoe - Michigan 9tal 4niversity

QCD/Electroweak from DØ: 1

3/12/2003

Center of Mass Energy (TeV)

Robert L. Kehoe - Michigan State University

Z'→ee Search

- expected in many models, including left-right symmetric models
- data sample
 - 50 pb⁻¹
 - selection
 - single electron trigger
 - $|\eta| < 2.5$
 - $E_T > 25 \text{ GeV}$
- electron identification
 - isolation, energy fraction in electromagnetic layers
 - shower shape
 - studied using GEANT
 - $M_{Z'}$ 300 thru 800 GeV with PYTHIA
 - P_T dependent shower shape cut

Backgrounds

- Z + Drell-Yan
 - use fast detector simulation
 - resolutions tuned to data
 - PYTHIA+CTEQ4L
 - correct LO cross section vs M_{ee}
 - Hamburg, van Neerven, Matsura, Nucl. Phys. B359, 343 (1991)
- QCD fake background
 - mainly dijets to leading π^0 's
 - dominates at high mass
 - M_{ee} distribution from data
- normalize $Z/\gamma^* + QCD$
 - $65 \text{ GeV} < M_{ee} < 115 \text{ GeV}$

Robert L. Kehoe - Michigan State University

QCD/Electroweak from DØ: 1

Mee (GeV)

Data at High Mass

highest mass central-central event: **M**_{ee} = **386 GeV**

- estimated $Z \rightarrow ee$ cross section
 - consistent with existing measurement

data vs. expected background

agree well at high massno excess observed

QCD/Electroweak from DØ: 1

Robert L. Kehoe - Michigan State University

Results

- reference model
 - couplings to quarks and leptons
 - assume same as standard model Z
 - top decays available when $m_{Z'}$ permits
 - assume Z' width scales with mass
 - decay to Z is suppressed

- acceptance
 - calculated relative to Z
 - PYTHIA
 - fast detector simulation
- $M_{Z'} > 620 \text{ GeV} @ 95\% \text{ c.l.}$

QCD/Electroweak from DØ: 1

200

300

400

500

600

700

800 mass (GeV)

Summary

- probing highest mass scales with new energy
- QCD
 - dijet mass cross section
 - agrees with NLO theory, even at high mass
 - inclusive jet cross section very soon
 - near-term plan
 - substantially reduce jet energy scale errors
 - expand use of forward pseudorapidity coverage
 - ultimately improve errors and E resolution with tracking
- W/Z production
 - Z dimuon

 $\sigma *Br = 263.8 \pm 6.6 \text{ (stat)} \pm 17.3 \text{ (sys)} \pm 26.4 \text{ (lum) pb}$ - W µv, and W/Z electron channels well-advanced

- Z'^{\rightarrow} ee search

Robert L. Kehoe - Michigan State University

QCD/Electroweak from DØ: 1

 $M_{7} > 620 \text{ GeV}$