Status of Top Quark Analyses at DØ

Marumi Kado

Lawrence Berkeley National Laboratory

On behalf of the DØ Collaboration

Measurement of the top production cross section with Run II data

Improved measurement of the top mass with Run I data

First Measurement of the tt Cross Section at √s=1.96 TeV

Measurement based six analysis channels:

Lepton+jets (topological)

Lepton+jets (soft muon tag)

e a

dileptons

e+jets, μ+jets Br = 14.7% *Efficient Not very pure* $e+jets/\mu$, $\mu+jets/\mu$ Br = 14.7%

Pure Not very efficient

e μ and $\mu\mu$ Br = 2.5 and 1.2%

Pure and efficient Low branching

Cross section at Run II ~30% higher than at Run I Predictions ranging from 5.4 to 7.4 pb Cacciari et. al. HEP-PH 0303085

Data sample from mid-August until mid-January with luminosities from 30 to 50 pb⁻¹

Triggers

Use calorimeter and muon system at all levels of the trigger (L1, L2 and L3)

La Thuile 03

Object Identification

Reconstruction of Jets and Jet energy scale:

Improved legacy 0.5 cone algorithm with JES corrections (see talk by B. Kehoe)

Reconstruction of electrons (only central):

- Select EM particles (simple cone, shower shape, EM fraction)
- Match with track (ϕ , η , and E/p)

Missing Transverse Energy:

From calorimeter with JES corrections (and muon correction)

Dimuon Channel

Luminosity $42.6 \ pb^{-1}$

Selection criteria:

2 isolated muons, $MET(M_{\mu\mu})$, H_T and more than 2 Jets **Backgrounds**:

La Thuile 03

eµ Channel

Luminosity $33.0 \, pb^{-1}$

Selection criteria: 1 electron, 1 isolated muons, MET, MET_{CAL} , H_T (e) and more than 2 Jets

Backgrounds:

eµ Candidate Event

Lepton-plus-Jets Analyses

Luminosities: e+jets 49.5 pb^{-1} and $\mu+jets$ 40.0 pb^{-1}

Backgrounds: QCD multi-jets and W multi-jets

Method:

Preselect a sample enriched in W events
Evaluate QCD multi-jet (as a function of N_{jets})
Estimate W+4jets assuming Berends scaling
Apply topological selection

Preselection:

1 EM object or muon, MET, soft muon veto

QCD background evaluation (matrix method):

Separate W+tt and QCD with loose (L) and tight (T) lepton characteristics. Efficiencies $(L \rightarrow T)$ for signal \mathcal{E}_{W+tt} and background ε_{OCD} are measured independently:

"Matrix method" $\begin{cases} e+jets: Track match to the EM object \\ \mu+jets: Muon isolation \\ N - \varepsilon N \end{cases}$

$$\begin{cases} N_{L} = \widetilde{N}_{W+t\bar{t}} + \widetilde{N}_{QCD} \\ N_{T} = \varepsilon_{W+t\bar{t}} - \widetilde{N}_{W+t\bar{t}} + \varepsilon_{QCD} \widetilde{N}_{QCD} \end{cases} \implies \begin{cases} \widetilde{N}_{W+tt} = \varepsilon_{W+t\bar{t}} - \varepsilon_{QCD} N_{L} \\ \widetilde{N}_{QCD} = \varepsilon_{QCD} - \varepsilon_{QCD} - \varepsilon_{QCD} \\ \widetilde{N}_{W+t\bar{t}} - \varepsilon_{QCD} - \varepsilon_{QCD} - \varepsilon_{W+t\bar{t}} - \varepsilon_{QCD} \end{cases}$$

La Thuile 03

Signal probabilities...

 $\mathcal{E}_{W+tt} vs N_{jets}$

... are obtained from benchmark signal samples of $Z \rightarrow ee \text{ or } \mu\mu$

Non trivial dependence of ε_{W+tt} w.r.t. N_{jets} (especially in the $\mu+jets$ case)...

 \Rightarrow Correction taken from MC

Background nature

 μ +jets

QCD Background essentially due to Heavy Flavor semi-leptonic decays

e+jets QCD Background due to $leading \pi^0$ or compton QCD events and Fake track or γ conversion

Background Probabilities...

... are obtained from benchmark QCD samples with low MET Dependence of the ε_{QCD} w.r.t. MET and N_{jet} ...

DØ Run II Preliminary

La Thuile 03

Estimation of the QCD background:

Berends scaling:

$$\alpha \equiv \frac{\sigma(W + (n+1)_{jets})}{\sigma(W + n_{jets})}$$

Estimation of the W background for $N_{jets} \ge 4$:

$$\widetilde{N}_{W}^{4} = \begin{cases} 24.2 \\ 11.9 \end{cases} \qquad \widetilde{N}_{QCD}^{4} = \begin{cases} 11.9 \\ 12.5 \end{cases} \qquad N_{obs}^{4} = \begin{cases} 38 \ (\mu + jets) \\ 22 \ (e + jets) \end{cases}$$

Apply topological cuts:

Apalanarity and HT

Analysis	N_W	N _{QCD}	Bkg. Tot.	Signal*	N _{obs}
e+jets	1.3±0.5	1.4±0.4	2.7±0.6	1.8	4
μ +jets	2.1±0.9	0.6±0.4	2.7±1.1	2.4	4
				* For	$\sigma = 7pb$

µ+jets Candidate Event

Soft Muon Tag Analyses

Selection before Soft Muon Tag

- Use the same preselection as l+jets
- Require at least 3 jets
- Apply mild topological cuts

QCD background. from matrix method

Cross Section Measurement

Combining the observation of all channels an excess of 3σ is observed, compatible with a signal expectation at the 35% CL

The combined cross section is:

 $\sigma = 8.4^{+4.5}_{-3.7}$ (stat) $^{+5.3}_{-3.5}$ (syst) ± 0.8 (lumi) pb

Status of the Top Mass Measurement in the Lepton+Jets Channels at Run I

Likelihood method using most available information

Uses DØ Run I statistics (125 pb^{-1}) & selection \rightarrow 91 events

Signal and background probability (simple realistic model):

P_b.: 22 events (pure sample)

Likelihood definition:

$$-\ln L(\alpha) = -\sum_{i=1}^{N} \left\{ \ln \left[c_1 P_{t\bar{t}}(x_i;\alpha) + c_2 P_{bkg}(x_i) \right] \right\} + N \int A(x) \left[c_1 P_{t\bar{t}}(x;\alpha) + c_2 P_{bkg}(x) \right] dx$$

Estimate the signal and background contributions and m_{top}:

$m_{top} = 179.9 \pm 3.6$ (stat) GeV/c^2 (5.6 GeV from PRD 58 052001,1998)

Large improvement on the statistical uncertainty (~2.4× stats)

		548
Jet Energy Scale	5.6 GeV	546
Signal model	1.5 GeV	544
8		542
Background model	1.0 GeV	540 m _W
		538
Multiple interactions	1 3 GeV	536
	10 30/	70 80 90
		W mass (GeV)

Expect a substantial improvement in the JES systematic

La Thuile 03

Conclusions and Outlook

D0 measurement of the tt cross section at $\sqrt{s}=1.96$ TeV carried out at Tevatron Run II:

 $\sigma = 8.4^{+4.5}_{-3.7}$ (stat) $^{+5.3}_{-3.5}$ (syst) ± 0.8 (lumi) pb

Short term perspective: Dielectron channel and Lifetime tagging analyses Medium term perspective: Complete analyses of mass and cross sections

Status of the new top Run I mass measurement:

 $m_{top} = 179.9 \pm 3.6 \text{ (stat)} \pm 6 \text{ (syst)} \text{ GeV/}c^2$

Short term perspective: Improve JES systematic uncertainty, W helicity (Run I)

Medium term perspective: Top Properties (W helicity, spin correlations) and single top with Run II data

Long term perspective: top mass $2fb^{-1} \rightarrow 2.7$ GeV

 $15fb^{-1} \rightarrow 1.3GeV$

La Thuile 03

La Thuile 03