<u>CKM fits and new physics in $B-\overline{B}$ mixing</u>

La Thuile, March 2003

Gino Isidori [*INFN–Frascati*]

based mainly on: R. Fleisher, G. I., J. Matias *hep-ph/0302229* G. D'Ambrosio & G. I. *Phys. Lett. B 530 (2002) 108*

Introduction

- The Unitarity Triangle with a non–standard $B-\overline{B}$ mixing
- New-physics in $B-\overline{B}$ mixing vs. new-physics in $\Delta F=1$ transitions
- The role of $B \to \pi^+ \pi^-$ CP asymmetries
- Implications for rare decays
- Conclusions

Introduction

Recent precise measurements of flavour-changing transitions (especially in the *B* sector) show a good consistency with the expectations of the CKM mechanism:

A. Stocchi, '03

\Leftarrow Standard UT fits

shows that large newphysics contributions are not *needed* to explain the data...

...however this is not the complete answer to the following question: <u>Is there still room for possible large new-physics contributions in flavour dynamics?</u> To answer this question we shall first address the following points:

- Which are the observables in the flavour sector most sensitive to NP?
- Can we determine the CKM structure ignoring these obs.?
- Are we using all the available exp. data in the *standard UT fits*?
- How large is the parameter space then left for NP effects?

To answer this question we shall first address the following points:

- Which are the observables in the flavour sector most sensitive to NP?
- Can we determine the CKM structure ignoring these obs.?
- Are we using all the available exp. data in the *standard UT fits*?
- How large is the parameter space then left for NP effects?

 $B-\overline{B}$ mix. and, more in general, $\Delta F=2$ ampl. are the most natural candidates

Yes: it is possible, but with less precision

No: *rare decays* and charmless non–leptonic *B* decays are usually ignored

It is quite small, but it has a rather interesting structure...

• The Unitarity Triangle with a non–standard $B-\overline{B}$ mixing

If we allow generic O(1) new contributions to $B-\overline{B}$ mixing...

...we loose the UT constraints *both* from ΔM_{B_d} and from $A_{CP}(B \rightarrow \psi K_S)$

N.B.: The experimental measurement of $A_{CP}(B \rightarrow \psi K_S)$ let us to fix the $\Delta B=2$ mixing phase (ϕ_d) up to a twofold ambiguity: $(\phi_d)^{exp} \approx 47^\circ$ or 133°

The *standard* interpretation $[\phi_d=2\beta]$ of the second solution is clearly inconsistent with the $|V_{ub}|$ circle

This solution make sense only in presence of NP, when $\phi_d = 2\beta + \phi_N$

but if $\phi_N \neq 0$ we cannot translate the measurement of ϕ_d into a constraint for β

The *standard* plot of the $\approx 133^{\circ}$ solution is totally misleading!

If we wish to put some additional bound on the NP phase ϕ_N we need extra constraints (independent from $B-\overline{B}$ mixing) on the angles of the UT

Several strategies have been proposed in the literature, but most of them are not particularly useful at the moment, e.g.:

- determination of γ by means of $\Gamma(B \to K\pi)$ good exp. data, but large th. uncertainties
- determination of γ by means of $A_{CP}(B \rightarrow D+X)$ th. clean, but very difficult from the exp. side

In the following I shall concentrate on two (very different) class of observabels:

- time-dependent CP asymmetries in $B \to \pi^+\pi^$ precise data expected soon, partial th. control of the *penguin pollution* by means of $B \to K\pi$ [Fleischer & Matias, '02]
- the rate of the rare decay $K^+ \rightarrow \pi^+ \nu \nu$ th. very clean, slow but significant exp. progress in 2002

• New-physics in $B-\overline{B}$ mixing vs. new-physics in $\Delta F=1$ transitions

Both $K \rightarrow \pi \nu \nu$ and $B \rightarrow \pi \pi$ transitions are not (pure) tree-level decays:

to which extent can we use their SM expressions to determine the CKM structure if we assume large NP effects in $\Delta B=2$ ($\Delta F=2$) amplitudes?

NP effects in $\Delta F=1$ FCNC amplitudes turn out to be very suppressed –with respect to the SM term – under two very general and <u>natural</u> conditions:

- the effective NP scale is substantially higher that the e.w. scale
- the new effective flavour-changing coupling ruling $\Delta F=2$ transitions can be expressed as the square of two $\Delta F=1$ couplings

These conditions, which are satisfied in several specific frameworks,

low-energy SUSY with large LL and/or RR mixing terms and small LR terms models with a new flavour-changing Z' models with vector-like quarks .

leads to the following general dimensional argument:

This generic inequality can be evaded under specific circumstances [fine-tuning cancellations of different terms, large hierarchies of matrix elements,...] but it is clearly the most natural possibility:

the generic scenario with O(1) modifications in $\Delta B=2$ amplitudes and negligible (< 10%) effects in $\Delta F=1$ amplitudes is certainly worth to be investigate in detail

• The role of $B \to \pi^+\pi^-$ CP asymmetries

using the (exp.) value of ϕ_d from $A_{CP}(B \rightarrow \psi K_S)^{mix}$ we extract an info on γ independent of possible NP in $\Delta B=2$

In the general case $(d \neq 0)$ we can extract γ if we complement the two asymmetries with a theoretical estimate of d

different from zero only if $\theta \neq 0$ [model-independent constraint on θ in terms of γ and d]

A phenomenological estimate of *d* can be obtained by means of SU(3) relations from $B \to K^{\pm}\pi^{\mp}$ rates

[Fleischer & Matias, '02]

If $B \to \pi^+\pi^-$ CP asymmetries turn out to be large, this procedure is very stable with respect to possible th. errors [much better than bounds on γ based on $B \to K\pi$ rates only] and preliminary results by Babar and Belle certainly do not exclude this possibility:

naïve average of Babar & Belle:

$$A_{CP}(B \to \pi^+ \pi^-)^{\text{mix}} = +0.49 \pm 0.27$$

 $A_{CP}(B \to \pi^+ \pi^-)^{\text{dir}} = -0.51 \pm 0.19$

not to be taken seriously [bad consistency]... If $B \to \pi^+\pi^-$ CP asymmetries turn out to be large, this procedure is very stable with respect to possible th. errors [much better than bounds on γ based on $B \to K\pi$ rates only] and preliminary results by Babar and Belle certainly do not exclude this possibility:

If $B \to \pi^+\pi^-$ CP asymmetries turn out to be large, this procedure is very stable with respect to possible th. errors [much better than bounds on γ based on $B \to K\pi$ rates only] and preliminary results by Babar and Belle certainly do not exclude this possibility:

 $A_{CP}(B \to \pi^+ \pi^-)^{\text{mix}} = +0.49 \pm 0.27$ naïve average of not to be taken seriously Babar & Belle: $A_{CP}(B \to \pi^+ \pi^-)^{\text{dir}} = -0.51 \pm 0.19$ [bad consistency]... ...but too nice to be completely ignored! [Fleischer, G.I., Matias, '03] 1– σ bounds on γ 1 for the non-standard 0.8 solution $\phi_d \approx 133^\circ$ 0.6 $B_d \rightarrow \pi\pi$ EK [without further inputs, 0.4 the consistency of this 0.2 solution is completely Rb equivalent to the one of the standard case -0.75 -0.5 -0.25 0 0.25 0.5 0.75 ρ

Implications for rare decays

Rare transitions of the type $s, b \to d + vv(ll)$ are ideal probes to measure $|V_{td}|$ \Rightarrow most clean observables: $BR(K^+ \to \pi^+ vv)$ & $BR(B_d \to \mu^+ \mu^-)$

$$\bigvee_{d} \overset{s}{\underset{Z}{\longrightarrow}} \overset{q=u,c,t}{\underset{Z}{\longrightarrow}} + box \implies A_{q} \sim m_{q}^{2} \underbrace{V_{qs}^{*} V_{qd}}_{\lambda_{q}} \sim \begin{bmatrix} \Lambda_{QCD}^{2} \lambda & (u) \\ m_{c}^{2} \lambda + i m_{c}^{2} \lambda^{5} & (c) \\ m_{t}^{2} \lambda^{5} + i m_{t}^{2} \lambda^{5} & (t) \end{bmatrix}$$

genuine O(G_F²) transition dominated by short–distances
hadronic matrix element determined by K₁₃ data

$$[\lambda = \sin \theta_c]$$

$$\bullet BR(K^{+})^{\text{(SM)}} = C |V_{cb}|^{4} [(\bar{\rho} - \rho_{c})^{2} + (\sigma \bar{\eta})^{2}] = (7.2 \pm 2.0) \times 10^{-11}$$

Irreducible th. error due to the charm contribution $\delta(B.R.) \sim 8\%$

$$\rho_c{=}1.40\pm0.06$$

present range determined by present uncertainty on CKM parameters Status & future prospects of the $BR(K^+ \rightarrow \pi^+ \nu \nu)$ measurement:

$$BR(K^{+} \rightarrow \pi^{+} \nu \overline{\nu}) = \left(1.57^{+1.75}_{-0.82}\right) \times 10^{-10}$$

- 2 events observed at BNL-E787 (0.15 bkg)
- central value 2×SM !
- Experimental apparatus upgraded to increase the sensitivity (E949: 10–20 events in 2 yrs)...

...but no running time scheduled in 2003.

Impact of $BR(K^+ \rightarrow \pi^+ \nu \nu)$ on the UT [fit without $\Delta B=2$ constraints]:

The statistical significance in favour of the non-standard solution is still not very high, but it is enough to conclude that we should not disregard it yet...!

Conclusions

Standard CKM fits provide a useful tool to check the consistency of the SM, but they are not the best tool to investigate non-standard scenarios
 underestimate of the NP parameter space

■*B*−*B̄* mixing has a *dark*-*side* [the $\phi_d \approx 133^\circ$ solution] which need to be further investigated [this is still the most natural place to look large NP effects !] \Rightarrow better data on $A_{CP}(B \rightarrow \pi^+\pi^-)$ and a direct measurement of $\cos(\phi_d)$ would be very useful in this respect

The information on flavour mixing obtained from $BR(K^+ \rightarrow \pi^+ \nu \nu)$ is so clean and important that it would be a big pity not to continue/plan dedicated experiment to improve it