CKM fits and new physics in $B-\bar{B}$ mixing

La Thuile, March 2003
Gino Isidori
[INFN-Frascati]
$\begin{array}{ll}\text { based mainly on: } & \text { R. Fleisher, G. I., J. Matias hep-ph/0302229 } \\ & \text { G. D'Ambrosio \& G. I. Phys. Lett. B } 530 \text { (2002) } 108\end{array}$

- Introduction
- The Unitarity Triangle with a non-standard $B-\bar{B}$ mixing
- New-physics in $B-\bar{B}$ mixing vs. new - physics in $\Delta F=1$ transitions
- The role of $B \rightarrow \pi^{+} \pi^{-}$CP asymmetries
- Implications for rare decays
- Conclusions

- Introduction

Recent precise measurements of flavour-changing transitions (especially in the B sector) show a good consistency with the expectations of the CKM mechanism:

...however this is not the complete answer to the following question:
Is there still room for possible large new-physics contributions in flavour dynamics?

To answer this question we shall first address the following points:

- Which are the observables in the flavour sector most sensitive to NP?
- Can we determine the CKM structure ignoring these obs.?
- Are we using all the available exp. data in the standard UT fits?
- How large is the parameter space then left for NP effects?

To answer this question we shall first address the following points:

- Which are the observables in the flavour sector most sensitive to NP?
- Can we determine the CKM structure ignoring these obs.?
- Are we using all the available exp. data in the standard UT fits?
- How large is the parameter space then left for NP effects?
$B-\bar{B}$ mix. and, more in general, $\Delta F=2$ ampl. are the most natural candidates

Yes: it is possible, but with less precision

No: rare decays and charmless nonleptonic B decays are usually ignored

It is quite small, but it has a rather interesting structure...

- The Unitarity Triangle with a non-standard $B-\bar{B}$ mixing

If we allow generic $O(1)$ new contributions to $B-\bar{B}$ mixing...

$$
A(B \rightarrow \bar{B}) \propto \Delta M_{B_{d}} e^{-\mathrm{i} \phi_{\mathrm{d}} \propto\left(V_{\mathrm{td}}\right)^{2}+\Delta \&} \begin{gathered}
\text { contrib. of a generic } \\
(\bar{b} d)^{2} \text { operator } \\
\text { SM term }
\end{gathered}
$$

...we loose the UT constraints both from $\Delta M_{B_{d}}$ and from $A_{C P}\left(B \rightarrow \psi K_{S}\right)$

$$
\begin{aligned}
& \Delta M_{B_{d}} \propto\left|\left(V_{\mathrm{td}}\right)^{2}+\Delta\right| \\
& A_{C P}\left(B \rightarrow \psi K_{S}\right) \stackrel{\text { def }}{\text { de }}-\sin \left(\phi_{\mathrm{d}}\right)=-\sin \left(2 \beta+\phi_{\mathrm{N}}\right)
\end{aligned}
$$

region favored
by the SM interpretation
of ϵ_{K}
constraint from $b \rightarrow u$ semileptonic decays [tree-level SM amplitude]: very stable with respect to NP

There is a large range of values for $\operatorname{Re}(\Delta)$ and $\operatorname{Im}(\Delta)$ which satisfy these two (experimental) conditions
N.B.: The experimental measurement of $A_{C P}\left(B \rightarrow \psi K_{S}\right)$ let us to fix the $\Delta B=2$ mixing phase $\left(\phi_{d}\right)$ up to a twofold ambiguity: $\left(\phi_{d}\right)^{\text {exp }} \approx 47^{\circ}$ or 133°

The standard interpretation $\left[\phi_{\mathrm{d}}=2 \beta\right]$ of the second solution is clearly inconsistent with the $\left|V_{\mathrm{ub}}\right|$ circle

This solution make sense only in presence of NP, when $\phi_{d}=2 \beta+\phi_{N}$
but if $\phi_{\mathrm{N}} \neq 0$ we cannot translate the measurement of ϕ_{d} into a constraint for β

$$
\downarrow
$$

The standard plot of the $\approx 133^{\circ}$ solution is totally misleading!

If we wish to put some additional bound on the NP phase ϕ_{N} we need extra constraints (independent from $B-\bar{B}$ mixing) on the angles of the UT

Several strategies have been proposed in the literature, but most of them are not particularly useful at the moment, e.g.:

- determination of γ by means of $\Gamma(B \rightarrow K \pi)$ good exp. data, but large th. uncertainties
- determination of γ by means of $A_{C P}(B \rightarrow D+X)$ th. clean, but very difficult from the exp. side

In the following I shall concentrate on two (very different) class of observabels:

- time-dependent CP asymmetries in $B \rightarrow \pi^{+} \pi^{-}$ precise data expected soon, partial th. control of the penguin pollution by means of $B \rightarrow K \pi \quad$ [Fleischer \& Matias, '02]
- the rate of the rare decay $K^{+} \rightarrow \pi^{+} \nu \nu$
th. very clean, slow but significant exp. progress in 2002
- New-physics in $B-\bar{B}$ mixing vs. new-physics in $\Delta F=1$ transitions

Both $K \rightarrow \pi \nu \vee$ and $B \rightarrow \pi \pi$ transitions are not (pure) tree-level decays:
to which extent can we use their SM expressions to determine the CKM structure if we assume large NP effects in $\Delta B=2(\Delta F=2)$ amplitudes?

NP effects in $\triangle F=1$ FCNC amplitudes turn out to be very suppressed -with respect to the SM term - under two very general and natural conditions:

- the effective NP scale is substantially higher that the e.w. scale
- the new effective flavour-changing coupling ruling $\Delta F=2$ transitions can be expressed as the square of two $\Delta F=1$ couplings
normaliz. of the operators such that \longrightarrow

$$
Q_{\Delta B=2}^{N P}=\frac{\delta_{b d}^{2}}{\Lambda_{e f f}^{2}}(\bar{b} \Gamma d)^{2} \quad Q_{\Delta B=1}^{N P}=\frac{\delta_{b d}}{\Lambda_{e f f}^{2}}(\bar{b} \Gamma d) \bar{f} \Gamma f
$$

$$
-Q_{\Delta B=2}^{S M}=\frac{\left(V_{t b}^{*} V_{t d}\right)^{2}}{M_{W}^{2}}(\bar{b} \Gamma d)^{2} \quad Q_{\Delta B=1}^{S M}=C \frac{\left(V_{t b}^{*} V_{t d}\right)}{M_{W}^{2}}(\bar{b} \Gamma d) \bar{f} \Gamma f
$$

$$
\Lambda_{e f f} \gg M_{W}
$$

$$
\longrightarrow^{\longrightarrow} \gg 1 \text { for QCD penguins }
$$

These conditions, which are satisfied in several specific frameworks,
low-energy SUSY with large LL and/or RR mixing terms and small LR terms models with a new flavour-changing Z ' models with vector-like quarks
!
leads to the following general dimensional argument:

$$
\frac{\left\langle Q_{\Delta B=2}^{N P}\right\rangle}{\left\langle Q_{\Delta B=2}^{S M}\right\rangle} \sim 1 \quad \rightarrow \quad \frac{\left\langle Q_{\Delta B=1}^{N P}\right\rangle}{\left\langle Q_{\Delta B=1}^{S M}\right\rangle} \sim \frac{1}{C} \frac{M_{W}}{\Lambda_{e f f}} \ll 1
$$

This generic inequality can be evaded under specific circumstances
[fine-tuning cancellations of different terms, large hierarchies of matrix elements,...] but it is clearly the most natural possibility:
the generic scenario with $O(1)$ modifications in $\Delta B=2$ amplitudes and negligible ($<10 \%$) effects in $\Delta F=1$ amplitudes is certainly worth to be investigate in detail

${ }^{\bullet}$ The role of $B \rightarrow \pi^{+} \pi^{-}$CP asymmetries

Neglecting $\Delta B=1$
NP contributions

$$
\begin{aligned}
& A\left(B \rightarrow \pi^{+} \pi^{-}\right) \propto e^{\mathrm{i} \gamma}-d e^{\mathrm{i} \theta} \longleftarrow \text { QCD penguin pollution } \\
& \quad d=0 \\
& {[\theta=\text { strong phase }] } \\
& \text { tree-level } b \rightarrow u \bar{u} d \\
& \text { amplitude }
\end{aligned}
$$

$$
A_{C P}\left(B \rightarrow \pi^{+} \pi^{-}\right)^{\operatorname{mix}}=\sin \left(\phi_{\mathrm{d}}+2 \gamma\right) \stackrel{\mathrm{SM}}{=}-\sin (2 \alpha) \quad A_{C P}\left(B \rightarrow \pi^{+} \pi^{-}\right)^{\mathrm{dir}}=0
$$

using the (exp.) value of ϕ_{d} from $A_{C P}\left(B \rightarrow \psi K_{S}\right)^{\text {mix }}$ we extract an info on γ independent of possible NP in $\Delta B=2$

In the general case $(d \neq 0)$ we can extract γ if we complement the two asymmetries with a theoretical estimate of d

A phenomenological estimate of d can be obtained by means of $\operatorname{SU}(3)$ relations from $B \rightarrow K^{ \pm} \pi^{\mp}$ rates
[Fleischer \& Matias, '02]

If $B \rightarrow \pi^{+} \pi^{-}$CP asymmetries turn out to be large, this procedure is very stable with respect to possible th. errors [much better than bounds on γ based on $B \rightarrow K \pi$ rates only] and preliminary results by Babar and Belle certainly do not exclude this possibility:
naïve average of
Babar \& Belle:

$$
\begin{aligned}
& A_{C P}\left(B \rightarrow \pi^{+} \pi^{-}\right)^{\mathrm{mix}}=+0.49 \pm 0.27 \\
& A_{C P}\left(B \rightarrow \pi^{+} \pi^{-}\right)^{\mathrm{dir}}=-0.51 \pm 0.19
\end{aligned}
$$

not to be taken seriously [bad consistency]...

If $B \rightarrow \pi^{+} \pi^{-}$CP asymmetries turn out to be large, this procedure is very stable with respect to possible th. errors [much better than bounds on γ based on $B \rightarrow K \pi$ rates only] and preliminary results by Babar and Belle certainly do not exclude this possibility:
naïve average of Babar \& Belle:

$$
\begin{aligned}
& A_{C P}\left(B \rightarrow \pi^{+} \pi^{-}\right)^{\mathrm{mix}}=+0.49 \pm 0.27 \\
& A_{C P}\left(B \rightarrow \pi^{+} \pi^{-}\right)^{\mathrm{dir}}=-0.51 \pm 0.19
\end{aligned}
$$

not to be taken seriously [bad consistency]...
$1-\sigma$ bounds on γ for the standard solution $\phi_{\mathrm{d}} \approx 47^{\circ}$
[consitency of the SM case]

If $B \rightarrow \pi^{+} \pi^{-}$CP asymmetries turn out to be large, this procedure is very stable with respect to possible th. errors [much better than bounds on γ based on $B \rightarrow K \pi$ rates only] and preliminary results by Babar and Belle certainly do not exclude this possibility:
naïve average of Babar \& Belle:

$$
\begin{aligned}
& A_{C P}\left(B \rightarrow \pi^{+} \pi^{-}\right)^{\mathrm{mix}}=+0.49 \pm 0.27 \\
& A_{C P}\left(B \rightarrow \pi^{+} \pi^{-}\right)^{\mathrm{dir}}=-0.51 \pm 0.19
\end{aligned}
$$

not to be taken seriously [bad consistency]...
[Fleischer, G.I., Matias, '03]
$1-\sigma$ bounds on γ for the non-standard solution $\phi_{\mathrm{d}} \approx 133^{\circ}$
[without further inputs, the consistency of this solution is completely equivalent to the one of the standard case]

- Implications for rare decays

Rare transitions of the type $s, b \rightarrow d+\nu \nu(l l)$ are ideal probes to measure $\left|V_{\mathrm{td}}\right|$
\Rightarrow most clean observables: $B R\left(K^{+} \rightarrow \pi^{+} v v\right) \quad \& B R\left(B_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)$

- genuine $\mathrm{O}\left(G_{\mathrm{F}}^{2}\right)$ transition dominated by short-distances

$$
\begin{equation*}
\left[\lambda=\sin \theta_{c}\right] \tag{t}
\end{equation*}
$$

- hadronic matrix element determined by $K_{l 3}$ data

$$
B R\left(K^{+}\right)^{(\mathrm{SM})}=C\left|V_{c b}\right|^{4}\left[\left(\bar{\rho}-\rho_{\mathrm{c}}\right)^{2}+(\sigma \bar{\eta})^{2}\right]=(7.2 \pm 2.0) \times 10^{-11}
$$

Irreducible th. error due to
the charm contribution

$$
\delta \text { (B.R.) } \sim 8 \%
$$

$$
\rho_{c}=1.40 \pm 0.06
$$

present range determined by present uncertainty on CKM parameters

Status \& future prospects of the $B R\left(\mathrm{~K}^{+} \rightarrow \pi^{+} \vee \mathrm{v}\right)$ measurement:

$$
\begin{aligned}
& B R\left(K^{+} \rightarrow \pi^{+} v \bar{v}\right) \\
& \quad=\left(1.57_{-0.82}^{+1.75}\right) \times 10^{-10}
\end{aligned}
$$

- 2 events observed at BNL-E787 (0.15 bkg)
- central value $2 \times$ SM !
- Experimental apparatus upgraded to increase the sensitivity (E949: 10-20 events in 2 yrs)...
...but no running time scheduled in 2003.

Impact of $B R\left(K^{+} \rightarrow \pi^{+} \vee \vee\right)$ on the UT [fit without $\Delta B=2$ constraints]:

The statistical significance in favour of the non-standard solution is still not very high, but it is enough to conclude that we should not disregard it yet...!

- Conclusions

-Standard CKM fits provide a useful tool to check the consistency of the SM, but they are not the best tool to investigate non-standard scenarios
\Rightarrow underestimate of the NP parameter space
${ }^{-} B-\bar{B}$ mixing has a dark-side [the $\phi_{\mathrm{d}} \approx 133^{\circ}$ solution] which need to be further investigated [this is still the most natural place to look large NP effects !]
\Rightarrow better data on $A_{C P}\left(B \rightarrow \pi^{+} \pi^{-}\right)$and a direct measurement of $\cos \left(\phi_{\mathrm{d}}\right)$ would be very useful in this respect

- The information on flavour mixing obtained from $B R\left(K^{+} \rightarrow \pi^{+} v v\right)$ is so clean and important that it would be a big pity not to continue/plan dedicated experiment to improve it

