Indications of Neutrino Oscillation in the K2K Neutrino Oscillation Experiment

March 10th, 2003 Les Rencontre de Physique de la Vallee d' Aoste,

Taku I SHI DA (KEK I PNS) for K2K Collaboration

K2K Collaboration

JAPAN: High Energy Accelerator Research Organization (KEK) Institute for Cosmic Ray Research (ICRR), University of Tokyo Kobe University / Kyoto University Niigata University / Okayama University Tokyo University of Science / Tohoku University **KOREA:** Chonnam National University Dongshin University / Korea University Seoul National University **U.S.A.:** Boston University / University of California, Irvine University of Hawaii, Manoa Massachusetts Institute of Technology State University of New York at Stony Brook University of Washington at Seattle **POLAND:** Warsaw University / Solton Institute

Since November 2002 JAPAN: Hiroshima University EUROPE: Rome / Saclay / Barcelona / Valencia / Geneva RUSSIA: Dubna

K2K is the first accerelator-based long-baseline neutrino oscillation experiment to investigate the neutrino oscillation observed in atmospheric neutrinos.

Target (AI) and Two HORNS

Les Rencontres de Physique de la Vallee d'Aoste: La Thuile 2003 6

Expected (MC) Neutrino Spectra and Radial Distributions at 300m/250km

Pion Monitor

Gas Cherenkov detector: Insensitive to primary protons.
 Measure momentum and angular distribution of pions N(p_π, θ_π) just after the 2nd horn (p_π>2GeV/c).
 Near to far extrapolation: F/N(E_v)

Front neutrino Detectors at KEK

- Ikt Water Cherenkov detector (KT) fiducial: 25 ton H₂O
- ► Water target/Scintillating fiber tracker (SciFi) 5.9 ton H₂O
- Muon range detector(MRD)
- Lead glass detector (LG)

Les Rencontres de Physique de la Vallee d'Aoste: La Thuile 2003 9

700 ton I ron

Water Cherenkov Detector (1kt)

- A miniture of Super-Kamiokande detector with 1/50 volume
- 680 20" PMTs with
 70cm spacing (same as SK)
- Inner Volume : 496 tons Fiducial Volume : 25.1 tons

(r=2m sylindrical volume along beam)

Scintillating Fiber(SciFi) Tracker

Typical CCD Pixel I mage

Super-Kamiokande

(April 1996 commissioned)

- 50,000 ton water Cherenkov detector (22.5 kton fiducial volume)
- Optically separated INNER and OUTER detector

e-like and µ-like events

Les Rencontres de Physique de la Vallee d'Aoste: La Thuile 2003 1

14

Les Rencontres de Physique de la Vallee d'Aoste: La Thuile 2003

16

Neutrino Energy Reconstruction

Les Rencontres de Physique de la Vallee d'Aoste: La Thuile 2003 18

QE and nQE in SciFi 2-track events

(1) KT (p_{μ} , θ_{μ}) distribution using ϕ_{fit} , QE/nQE_{fit}

Fit result of Neutrino Flux at KEK Site

Super-K: Expected E_v^{rec} spectrum for 1Rµ

Initial 1Rµ spectrum w/ all syst. err. incl. Escale

Maximum likelihood fit with $(sin^22\theta, \Delta m^2)$

$$L_{tot} = L_{norm} \cdot L_{shape} \cdot L_{syst}$$

Term for # of FCFV events

Likelihood

$$L_{norm} = Poisson(N_{obs}, N_{exp'ed}(\Delta m^2, \sin^2 2\theta, f_{syst}))$$

 $N_{obs}: \text{Observed number of FCFV events (56)}$ $N_{exp'ed}(\Delta m^2, \sin^2 2\theta, f_{syst}) = N_{KT}^{obs} \cdot \frac{N_{SK}^{MC}(\Delta m^2, \sin^2 2\theta, f_{syst})}{N_{KT}^{MC}(f_{syst})}$

(exp'ed # of FCFV events)

Term for E_{ν}^{rec} distribution for 1R μ events

$$L_{shape} \equiv \prod_{i=1}^{29} P(E_i^{rec}; \Delta m^2, \sin^2 2\theta, f_{syst})$$

P: normalized E_v^{rec} distribution for 1R μ events estimated by MC simulation

Systematic parameters

$$L_{syst} \equiv \exp\left(-\Delta f_{\Phi,nQE}^{T} \cdot M_{FD}^{-1} \cdot \Delta f_{\Phi,nQE} / 2\right) \\ \times \exp\left(-\Delta f_{F/N}^{T} \cdot M_{F/N}^{-1} \cdot \Delta f_{F/N} / 2\right) \\ \times \exp\left(-\Delta f_{\varepsilon SK}^{T} \cdot M_{\varepsilon SK}^{-1} \cdot \Delta f_{\varepsilon SK} / 2\right) \\ \times \exp\left(-\Delta f_{n6}^{2} / 2\sigma_{n6}^{2}\right) \\ \times \exp\left(-\Delta f_{n11}^{2} / 2\sigma_{n11}^{2}\right) \\ \times \exp\left(-\Delta f_{Esk}^{2} / 2\sigma_{Esk}^{2}\right)$$

$$\Delta f = f - f_{cent}$$

• $M_{\rm FD}$, M_{π} , $M_{\epsilon SK}$: error matrices(spec+nQE/QE, far/near, ϵ_{SK}) σ_{n6} : norm. err. for Jun99 (=+0.80–0.68 evts) σ_{n11} :norm. err. for Nov99~ (=5.34% dominated by KT/SK fid. vol. err.) σ_{Esk} : SK energy scale error (3%)

Expected number of FCFV events w/o oscillation

Generate many sets of random numbers for f_{syst} which distribute according to the error matrices

Calculate

$$N_{\rm exp'ed}(\Delta m^2,\sin^2 2\theta,f_{\rm syst})$$

 $80.1_{-5.4}^{+6.2}$ events

for each set w/ $sin^22\theta=0$

Jun99	Total	+1.0%
		-0.85%
Nov99~	Spectrum	+0.56%
		-0.63%
	nQE/QE	+0.47%
		-1.1%
	Far/Near	+4.9%
		-5.0%
	Norm	5.0%
Total		+7.7%
		-6.7%

Best fit 1Rµ spectrum & Nsk

Best fit point $(\sin^2 2\theta, \Delta m^2)$ = (1.0, 2.8x10⁻³eV²)

KS test prob.(shape): 79%

$$N_{SK} = 54.2 \text{ (Obs.} = 56)$$

Very good agreement Shape & N_{SK}

Les Rencontres de Physique de^Ela^c Vallee d'Aoste: La Thuile 2003 28

Result

Null Oscillati	on Probability	
	analysis-1	analysis-2
N _{SK} only	1.3%	0.7%
Shape only	15.7%	14.3%
N _{SK} +Shape	0.7%	0.4%

Best fit $(\sin^2 2\theta, \Delta m^2)$

Both Shape and N_{SK} +Shape indicate consistent parameter region

Allowed regions

Both indicate consistent Δm^2 region

90%CL Allowed Regions of K2K and SK atm-v

- K2K Oscillation analysis on June99 ~July01 data(K2K-I)
 - 1. Null oscillation probability is less than 1%.
 - 2. Both SK rate reduction and E_v^{rec} shape indicate consistent oscillation parameters region.
 - 3. $\Delta m^2 = 1.5 \sim 3.9 \times 10^{-3} eV^2$ for $sin^2 2\theta = 1 @ 90\% CL$
 - 4. $sin^2 2\theta$, Δm^2 are consistent with atmospheric neutrino results
- Data taking has been resumed successfully (2002/12/22~, K2K-II).
- Goal is to accumulate 10²⁰ protons on target, Twice as large as this data sample.

JHF-Kamioka v Project

■ JHF 50GeV PS → Super-Kamiokande (0.75MW) (22.5kt fid.) •× ~100 of K2K • $\nu_{\mu} \rightarrow \nu_{x}$ disapp. / $\nu_{\mu} \rightarrow \nu_{e}$ app. / NC

