

Measurements of the Unitarity Triangle by Belle

HIGUCHI, Takeo

High Energy Accelerator Research Organization (KEK)

The unitarity triangle

XVII Rencontres de Physique de la Vallee d'Aoste

Today's Contents

Introduction

- Introduction to the unitarity triangle
- Interior angle measurements (measurements of time-dependent *CP* violation)

-
$$\phi_2: B^0 \to \pi^+ \pi^-$$

-
$$\phi_1: b \to c\overline{c}s, b \to s\overline{s}s$$

Side measurement

-
$$/V_{ub}$$
 : $B^{\,0}
ightarrow D_{\!s}^{\,+} \pi^{\!-}$

Conclusions

Introduction

Introduction to the Unitarity Triangle

• What is the unitarity triangle?

- It is a triangle formed by elements of quark-mixing-matrix of three generations.

- Which part of physics is the triangle related to?
 - The quark-mixing-matrix of three generations is a key to describe <u>*CP* violation</u>.
 - N.B: The three-generation $\Gamma(X \to f_{CP}) \neq \Gamma(\overline{X} \to f_{CP})$ matrix is proposed by Kobayashi and Maskawa in 1973 (**KM-model**).

Predictions of the KM-model

- There are ≥ 6 quarks.
 ✓ Discovery of *c*-, *b*-, and *t*-quarks.
- *CP* violation in the *B* system. $rightarrow sin2\phi_1$ measurement.

- The unitarity triangle is really a triangle. **Description Description Descrip**

Measurement of the unitarity triangle is an important test of the Standard Model

Time-Dependent *CP* Violation

- Introduction to time-dependent *CP* violation
- ϕ_2 measurement with $B^0 \rightarrow \pi^+\pi^-$ decay
- ϕ_1 measurement with $b \rightarrow c\overline{c}s$, $s\overline{s}s$ transitions

Time-Dependent CP Violation

$$\begin{aligned} A_{CP}(\Delta t) &\equiv \frac{\Gamma(\overline{B}^0 \to f_{CP}; \Delta t) - \Gamma(B^0 \to f_{CP}; \Delta t)}{\Gamma(\overline{B}^0 \to f_{CP}; \Delta t) + \Gamma(B^0 \to f_{CP}; \Delta t)} \\ &= S \sin(\Delta m_d \Delta t) + \mathcal{A} \cos(\Delta m_d \Delta t) \end{aligned}$$

If either \mathcal{S} or \mathcal{A} is non-zero, $B \to f_{CP}$ has CP asymmetry.

Note: Standard Model prediction $(\xi_f \equiv CP \text{ eigenvalue})$

	$m{b} ightarrow m{u} \overline{m{u}} m{d}$	$b \rightarrow c \overline{c} s$	$b \rightarrow s \overline{s} s$
S	$+\xi_{f}sin2\phi_{2}(?)$	$- \xi_{f} sin 2 \phi_{1}$	$-\xi_{i}$ sin2 ϕ_{1} (?)
${\cal A}$	0(?)	0	0(?)

S and A are related to the interior angle of the unitarity triangle.

Proper-Time Difference: Δt

$$f(\overline{B}^{0} \to f_{CP}; \Delta t) = e^{-\frac{\Delta t}{\tau_{B^{0}}}} \{1 + [S\sin(\Delta m_{d}\Delta t) + A\cos(\Delta m_{d}\Delta t)]\}$$

$$f(B^{0} \rightarrow f_{CP}; \Delta t) = e^{-\frac{\Delta t}{\tau_{B^{0}}}} \{1 - [S\sin(\Delta m_{d}\Delta t) + A\cos(\Delta m_{d}\Delta t)]\}$$

4 steps toward the *CP* violation measurement

- Reconstruct $B o f_{CP}$ decays
- Determine flavor of B_{tag}
- Measure proper-time difference: Δt
- Evaluate asymmetry from the obtained Δt distributions

ϕ_2 Measurement

- ϕ_2 can be measured by $b \rightarrow u\overline{u}d$ transition - We use $B^0 \rightarrow \pi^+\pi^-$ decay for ϕ_2 measurement.
- "Direct" CP violation

- Tree and penguin diagrams have amplitudes of the same order with different strong/weak phases. "Direct" *CP* violation $(\mathcal{A} \neq 0)$ is expected.

- In explicit words:
$$\Gamma(B^0 \to \pi^+ \pi^-) \neq \Gamma(\overline{B}^0 \to \pi^+ \pi^-)$$

$B^{\,0} ightarrow \pi^+\pi^-$ Reconstruction

$e^+e^- ightarrow q ar q$ Background Suppression

• $b\overline{b}$ or $q\overline{q}$ likelihood

- Construct $b\overline{b}$ or $q\overline{q}$ likelihood with Fisher discriminant, reconstructed *B* momentum direction, etc.

• Signal selection with likelihood ratio $\mathcal{L}_{bb}/(\mathcal{L}_{bb}+\mathcal{L}_{qq})$

Flavor Tagging

Proper-Time Difference Reconstruction

• Δt is calculated from distance between two B decay vertices

At (ps)

Fit for \mathcal{S} and \mathcal{A} Determination

Maximum likelihood fit method

$$L(\mathcal{S}, \mathcal{A}) = \prod_{i=1}^{760} P(\Delta t_i; \mathcal{S}, \mathcal{A}) \xrightarrow{\text{maximize}} \frac{\partial^2 L}{\partial \mathcal{S} \partial \mathcal{A}} = \mathbf{0}$$

$$P(\Delta t_{i}; S, A) = \underbrace{f_{\text{sig}} \cdot \mathcal{P}_{\text{sig}}(\Delta t; S, A) \otimes R}_{\text{signal}} + \underbrace{(1 - f_{\text{sig}}) \cdot \mathcal{P}_{\text{bkg}}(\Delta t)}_{\text{background}}$$

1.
$$f_{sig}$$
: event by event signal probability
2. P_{sig} : $\frac{e^{-|\Delta t|/\tau_B}}{4\tau_B} \{1 + q(1 - 2w) [S \sin(\Delta m_d \Delta t) + A \cos(\Delta m_d \Delta t)]\}$
3. R : Δt resolution

- 3. $R: \Delta t$ resolution
- 4. P_{bkg} : Δt distributiuon for background events

CP Violation in $B^0 ightarrow \pi^+\pi^-$ Decays

@ 78 fb⁻¹

$$\mathcal{S} = -1.23 \pm 0.41 ^{+0.08}_{-0.07}$$

 $\mathcal{A} = +0.77 \pm 0.27 \pm 0.08$

When S = 0 and A = 0, the probability to observe such large *CP* violation is less than 0.1%.

K. Abe et al. [Belle Collaboration], submitted to Phys. Rev. D, arXiv:hep-ex/0301032.

17/32

The Result Tells Us ...

- *CP* conservation is ruled 1. out at 3.4 σ confidence level.
- 2. $\mathcal{A} \neq 0$ cannot be established yet.

The Result Tells Us ... – **Constraint on** ϕ_2

Consistency Checks

- B^0 - B^0 mixing fit on $\triangle t$ distribution: OK $\checkmark B^0 \rightarrow K^+ \pi^-: \Delta m_d = 0.55^{+0.05}_{-0.07} \text{ ps}^{-1}$ consistent with PDG2002 $0.489 \pm 0.008 \text{ ps}^{-1}$
- Lifetime fit on Δt distributions: **OK**

 $\checkmark B^0 \to \pi^+ \pi^-: \tau_B = 1.42 \pm 0.14 \text{ ps}$ $\checkmark B^0 \to K^+ \pi^-: \tau_B = 1.46 \pm 0.08 \text{ ps}$

 $\begin{array}{l} \text{consistent with PDG2002} \\ 1.542 \, \pm \, 0.016 \, \, \text{ps} \end{array}$

• Null asymmetry test: *OK* \checkmark Non-*CP* sample: $S = +0.045 \pm 0.033$, $\mathcal{A} = -0.015 \pm 0.022$ $\checkmark B^0 \rightarrow K^+ \pi^-$: $S = +0.08 \pm 0.16$, $\mathcal{A} = -0.03 \pm 0.11$ \mathcal{A} : consistent with counting method (\rightarrow A.Drutskoy's talk)

Consistency checks ... OK

Probability to get result outside physical region^{20/32}

${\cal S}$ and ${\cal A}$ distribution obtained from parameterized MC (30k events)

$b \rightarrow c \overline{c} s$ Reconstruction

CP Violation in $\boldsymbol{b} \rightarrow \boldsymbol{c} \boldsymbol{\bar{c}} \boldsymbol{s}$ Transition

@ 78 fb⁻¹

$sin2\phi_1 = 0.719 \pm 0.074(stat) \pm 0.035(syst)$

Constraint on the Unitarity Triangle Shape

K. Abe et al. [Belle Collaboration], Phys. Rev. D 66, 071102 (2002)

CP Violation in $b \rightarrow s\bar{s}s$ Transition

Standard model

- Same magnitude of *CP* violation in $b \rightarrow c\overline{c}s$ and $b \rightarrow s\overline{s}s$.

New physics

- New physics may be present in the penguin-loop, if we see different *CP* violation in tree and penguin.

$$egin{array}{lll} m{B^0}
ightarrow \phi m{K_S} \ \phi
ightarrow m{K^+} m{K^-} \end{array}$$

16

14

12

10

8

6

2

5.2

B

5.22

 $B^0
ightarrow K^+ K^- K_S$

 $\eta^{\prime}
ightarrow \pi^+\pi^-\eta$, $ho\gamma$

 $B^0 o \eta' K_S$

2 5.24 5.26 5.28 $M_{
m bc} ({
m GeV}/c^2)$

5.3

N = 299 $p = 0.49 \pm 0.05$

CP Violation in $b \rightarrow s\bar{s}s$ Transition

K. Abe et al. [Belle Collaboration], to be published in Phys. Rev. D.

- sin2 ϕ_1 world average from $b \to c \bar{c} s$ transition - sin2 ϕ_1 = +0.734 \pm 0.054
- $B^{\,0}
 ightarrow K^{\!+}K^{\!-}K_{\!S}$ and $B^{\,0}
 ightarrow \eta' K_{\!S}$
 - Results consistent with the world average
- $m{\cdot}~m{B^{\,0}}
 ightarrow \phi m{K_S}$
 - 2.1 σ deviation from the world average.
 - A clue of new physics or just a statistical fluctuation? \Rightarrow Need more data.

|V_{ub}| Measurement

Hadronic *B* decays for $|V_{ub}|$

- $m{\cdot}~m{B^{\,0}}
 ightarrowm{D}_{\!s}^{\,+}\pi^{-}$ decay
 - The decay is dominated by $b \rightarrow u$ transition without penguin contribution.

• How do we determine $|V_{ub}|$?

- Reconstruct $B^{\,0}
 ightarrow D_s^{\,+} \pi^-$ decay.
- Determine branching fraction of the decay.
- Calculate $|V_{ub}|$ using the obtained fraction and other experimental results.

$B^{0} ightarrow D_{s}^{+} \pi^{-}$ Reconstruction

P. Krokovny et al. [Belle Collaboration], Phys. Rev. Lett. 89, 231804 (2002)

$$|V_{ub}^{\prime}/V_{cb}^{\prime}|$$
 from $B^{\,0}
ightarrow D_{s}^{\,+}\pi^{-}$

Another result by Belle

$$\mathcal{B}(B^{0} \to D_{s}^{+}\pi^{-}) \times \mathcal{B}_{\phi\pi} = (8.6^{+3.7}_{-3.0} \pm 1.1) \times 10^{-7}$$
CLEO collab. PRD 53, 4734 (1996)

$$\mathcal{B}(B^{0} \to D_{s}^{+}D^{-}) \times \mathcal{B}_{\phi\pi} = (3.0 \pm 1.1) \times 10^{-4}$$
Kim et al. PRD 63, 094506 (2001)

$$\frac{\mathcal{B}(B^{0} \to D_{s}^{+}\pi^{-})}{\mathcal{B}(B^{0} \to D_{s}^{+}D^{-})} = (0.424 \pm 0.041) \times \left|\frac{V_{ub}}{V_{cb}}\right|^{2}$$

$$(8.2^{+3.5}_{-2.9} \pm 3.4) \times 10^{-2}$$

Using PDG2002 for V_{cb} , $\left|V_{cb}\right| = (41.2 \pm 2.0) \times 10^{-3}$

$$\left|V_{ub}\right| = (3.5^{+1.0}_{-0.9}) \times 10^{-3}$$

Conclusions

• CP violation measurement

- $\begin{array}{ll} \ \varphi_{2} & \mathcal{S} = -1.23 \pm 0.41 \, {}^{+0.08}_{-0.07}, & \mathcal{A} = +0.77 \pm 0.27 \pm 0.08 \\ & 78^{\circ} \leq \phi_{2} \leq 152^{\circ} & @ \ 95\% \ \mathrm{C.L.} \\ & \ \varphi_{1} \ (b \rightarrow c \overline{c} \overline{s} \,) & \sin 2\phi_{1} = 0.719 \pm 0.074 \pm 0.035 \\ & \ \varphi_{1} \ (b \rightarrow s \overline{s} \overline{s} \overline{s} \,) & \text{consistent to } \sin 2\phi_{1} \ \mathrm{for} \ K^{+}K^{-}K_{S} \ \mathrm{and} \ \eta' K_{S} \\ & \text{while } 2.1\sigma \ \mathrm{deviation} \ \mathrm{is} \ \mathrm{observed} \ \mathrm{in} \ \phi K_{S} \end{array}$
- $\cdot |V_{ub}|$ measurement

-
$$\mathcal{B}r(B^0 \to D_s^+ \pi^-) = (2.4^{+1.0}_{-0.8} \pm 0.7) \times 10^{-5}$$

- $\left| V_{ub} / V_{cb} \right| = (8.2^{+3.5}_{-2.9} \pm 3.4) \times 10^{-2}$
- $\left| V_{ub} \right| = (3.5^{+1.0}_{-0.9}) \times 10^{-3}$

Backup Slides

The KEKB Accelerator

• e⁺e⁻ collider

KEKB

$\frac{World \ Record}{\mathcal{L}} = 8.26 \times 10^{33} \ \mathrm{fb}^{-1}$

KEKB history (2003/3/10)

The Belle Detector

- Vertex detector
- Momentum and energy detector
- Particle identification

Previous Results at Belle

@ 42
$$\text{fb}^{-1}$$
 : $S = -1.21 \stackrel{+0.38}{_{-0.27}} \stackrel{+0.16}{_{-0.13}}$, $\mathcal{A} = +0.94 \stackrel{+0.25}{_{-0.31}} \pm 0.09$

K. Abe et al. [Belle Collaboration], Phys. Rev. Lett, 89, 071801 (2002)

Results indicated large *CP* asymmetries \rightarrow Need more data.

Changes in new analysis

- More data = 78 fb⁻¹.
- Improvements to the analysis.
 - Better track reconstruction algorithm.
 - More sophisticated Δt resolution function.
 - Inclusion of additional signal candidates by optimizong event selection.
- Frequentist statistical analyses.
 - use of MC pseudo-experiments based on control samples.

Flavor Tagging

• Determine flavor of B_{CP}

- We can never know the B_{CP} 's flavor from its decay products, because the final state is CP eigenstate.

Knack of flavor tagging

We can know B_{CP} 's flavor from examination of its partner *B*'s flavor

Bose statistics

- A wave function of a same particle pair, B^0 or B^0 , originates from *bb* resonance (S=1) is symmetric due to Some statistics.
- However, same particle pair has L=1 and it is forbidden because the wave function gets anti-symmetric.
- Flavor of B_{CP} is always opposite to its partner B's flavor.

Systematic uncertainties

Source	S		\mathcal{A}	
Source	+ error	-error	+ error	-error
Background fractions	+0.044	-0.055	+0.058	-0.048
Vertexing	+0.037	-0.012	+0.044	-0.054
Fit bias	+0.052	-0.020	+0.016	-0.021
Wrong tag fraction	+0.015	-0.016	+0.026	-0.021
$ au_{B}, \Delta m_{d}, \mathcal{A}_{K\pi}$	+0.022	-0.022	+0.021	-0.014
Resolution function	+0.010	-0.013	+0.019	-0.020
Background shape	+0.007	-0.002	+0.003	-0.015
Total	+0.08	-0.07	+0.08	-0.08

$b \rightarrow c \bar{c} s$ Reconstruction

Δt Resolution Function $\equiv R(\Delta t)$

- 1. Detector resolution for z_{CP} , z_{tag}
- 2. Secondary track effect for z_{tag} reconstruction
- 3. Kinematic approximation

Belle

 au_B = 1.551 \pm 0.018 ps

World average $au_B = 1.542 {\pm} 0.016 ext{ ps}$

Consistent to world average

Fit Bias in $b \rightarrow c\bar{c}s$

• "sin2 ϕ_1 " of non-*CP* final state should be 0

" f_{CP} " = $B^0
ightarrow D^{*\pm}\pi^{\mp}$, $B^0
ightarrow J/\psi K^{*0}(K^+\pi^-)$, $B^0
ightarrow D^{*-}\ell^+
u$

$B^{0} \rightarrow K^{+}K^{-}K_{S}$: $CP = \pm 1$ Mixture

Since $B^0 \rightarrow K^+K^-K_S$ is 3-body decay, the final state is a mixture of $CP = \pm 1$. How can we determine the mixing fraction?

 $CP = \pm 1$ fraction is equal to that of $\ell = even/odd$

$B^0 \rightarrow K^+ K^- K_S$: $CP = \pm 1$ Mixture – Cont'd

 ℓ -even fraction in $|K^0K^0\rangle$ can be determined by $|K_SK_S\rangle$ system

$$\frac{\left|K^{0}\overline{K}^{0}\right\rangle}{CP = +1} = \frac{\alpha}{\sqrt{2}} \left(\frac{\left|K_{S}K_{S}\right\rangle + \left|K_{L}K_{L}\right\rangle}{\ell = \text{even}}\right) + \beta \left|K_{S}K_{L}\right\rangle}{\ell = \text{odd}}$$

Add K^+ to above kets $\left|K^+K^0\overline{K}^0\right\rangle = \frac{\alpha}{\sqrt{2}} \left(\left|K^+K_SK_S\right\rangle + \left|K^+K_LK_L\right\rangle\right) + \beta \left|K^+K_SK_L\right\rangle$ Using isospin symmetry

$$egin{aligned} \mathcal{B}(B^+ &
ightarrow K^+ K^0 \overline{K}^0) = \mathcal{B}(B^0
ightarrow K^0 K^+ K^-) imes rac{ au_{B^+}}{ au_{B^0}} \ &= rac{\mathcal{B}(B^0
ightarrow K_S K^+ K^-)}{2} imes rac{ au_{B^+}}{ au_{B^0}} \end{aligned}$$

$$\alpha^{2} = 2 \frac{\mathcal{B}(B^{+} \to K^{+}K_{S}K_{S})}{\mathcal{B}(B^{0} \to K^{0}K^{+}K^{-})} \times \frac{\tau_{B^{0}}}{\tau_{B^{+}}}$$
$$= \frac{\mathcal{B}(B^{+} \to K^{+}K_{S}K_{S})}{\mathcal{B}(B^{0} \to K_{S}K^{+}K^{-})} \times \frac{\tau_{B^{0}}}{\tau_{B^{+}}}$$
$$= 1.04 \pm 0.19 (\text{stat}) \pm 0.06 (\text{syst})$$
$$100^{+0}_{20}\% CP \text{ even}$$