

A sensitive search for $\mathbf{m} \rightarrow e\mathbf{g}$ decay: the MEG experiment

Marco Grassi INFN, Pisa

on behalf of the MEG Collaboration

Les Rencontres de Physique de la Vallée d'Aoste, La Thuile, March 10-15 2003

M. Grassi - INFN Pisa

La Thuile - March 15th , 2003

Outline

Physics motivations SUSY predictions Connection with neutrino oscillations $\mu \rightarrow e\gamma$ signature Signal and Background The experimental setup The beam The positron spectrometer The timing counter The e.m. calorimeter (LXe) Trigger and DAQ Conclusions Sensitivity Time profile

Physics motivation

Lepton Flavour Violation (LFV) processes, like $\mu \rightarrow e\gamma$, $\tau \rightarrow e\gamma$, $\mu \rightarrow eee$, $\mu \rightarrow e$ conversion, are negligibly small in the extended Standard Model (SM) with massive Dirac neutrinos (BR $\approx 10^{-50}$)

Super-Symmetric extensions of the SM (SUSY-GUTs) with right handed neutrinos and see-saw mechanism may produce LFV processes at significant rates

A $\mu{\rightarrow}e~\gamma$ decay is therefore a clean (no SM contaminated) indication of Super Symmetry

But...

Are these rates accessible experimentally?

SUSY indications

LFV induced by finite slepton mixing through radiative corrections

small $tan(\beta)$ excluded by LEP results

- SUSY SU(5) predictions BR ($\mu \rightarrow e\gamma$) $\approx 10^{-14} \div 10^{-13}$
- SUSY SO(10) predictions $BR_{SO(10)} \approx 100 \ BR_{SU(5)}$

R. Barbieri et al., Phys. Lett. B338(1994) 212R. Barbieri et al., Nucl. Phys. B445(1995) 215

v-oscillation connection

M. Grassi - INFN Pisa

5

$\textit{mt} \rightarrow e^+ \gamma \text{ Experiments}$

Lab.	Year	Upper limit	Experiment or Auth.
PSI	1977	< 1.0 × 10 ⁻⁹	A. Van der Schaaf et al.
TRIUMF	1977	< 3.6 × 10 ⁻⁹	P. Depommier et al.
LANL	1979	< 1.7 × 10 ⁻¹⁰	W.W. Kinnison et al.
LANL	1986	< 4.9 × 10 ⁻¹¹	Crystal Box
LANL	1999	< 1.2 × 10 ⁻¹¹	MEGA
PSI	~2005	~ 10 ⁻¹³	MEG

Two orders of magnitude improvement is required: experimental challenge!

La Thuile - March 15th , 2003

M. Grassi - INFN Pisa

6

The MEG Collaboration

INFN & Pisa University A. Baldini, C. Bemporad, F.Cei, M.Grassi, F. Morsani, D. Nicolo', R. Pazzi, F. Sergiampietri, G. Signorelli
INFN & Pavia University A.de Bari, P. Cattaneo, G. Cecchet
INFN & Genova University S. Dussoni, F. Gatti, D. Pergolesi
INFN Roma I D. Zanello

|--|

ICEPP, University of Tokyo T. Mashimo, S. Mihara, T. Mitsuhashi, T. Mori, H. Nishiguchi, W. Ootani, K. Ozone, T. Saeki, R. Sawada, S. Yamashita KEK, Tsukuba T. Haruyama, A. Maki, Y. Makida, A. Yamamoto, K. Yoshimura Osaka University Y. Kuno Waseda University T. Doke, J. Kikuchi, H. Okada, S. Suzuki, K. Terasawa, M. Yamashita, T. Yoshimura

PSI, Villigen J. Egger, P. Kettle, H. Molte, S. Ritt

Budker Institute, Novosibirsk L.M. Barkov, A.A. Grebenuk, D.G. Grigoriev, B, Khazin, N.M. Ryskulov

Experimental method

Easy signal selection with $\,\mu^{\!\scriptscriptstyle +}\,$ at rest

Detector outline

- Stopped beam of >107 μ /sec in a 150 μm target
- Liquid Xenon calorimeter for γ detection (scintillation)
 - fast: 4 / 22 / 45 ns
 - high LY: ~ 0.8 * NaI
 - short X₀: 2.77 cm
- Solenoid spectrometer & drift chambers for e⁺ momentum
- Scintillation counters for e⁺ timing

Required Performances

The sensitivity is limited by the by the accidental background

 $\mathsf{BR}_{acc} \propto \mathsf{R}_{m} \times \Delta \mathsf{E}_{e} \times \Delta \mathsf{E}_{o}^{2} \times \Delta J_{eo}^{2} \times \Delta \mathsf{t}_{eo} \approx 3 \times 10^{-14}$ The allows BR ($\mu \rightarrow e\gamma$) $\approx 10^{-13}$ but needs

Exp./Lab $\mathbf{D}\mathbf{E}_{e}/\mathbf{E}_{e}$ $\mathbf{D} \mathbf{E}_{\gamma} / \mathbf{E}_{\gamma}$ BR Year $\mathbf{D}_{e_{\gamma}}$ Stop rate Duty Dqev (ns) cyc.(%) (%) (90% CL) (%) (mrad) (S⁻¹) SIN 8.7 5×10^{5} 3.6 x 10⁻⁹ 1977 9.3 1.4 100 _ TRIUMF 2×10^{5} 1×10^{-9} 1977 10 8.7 6.7 100 2.4×10^{5} 1.7×10^{-10} LANL 1979 8.8 8 1.9 37 6.4 4.9 x 10⁻¹¹ Crystal Box 1986 8 1.3 87 4×10^{5} (6..9) 8 2.5×10^{8} MEGA 1999 1.2 4.5 1.6 17 (6..7) 1.2×10^{-11} 2.5×10^7 1×10^{-13} MEG 2005 0.8 0.15 19 100 4

FWHM

Detector Construction

The muon beam

- Exist
- Provide continuous >10⁸ μ /s (with e⁺ contamination)
- Two separate configurations of the $\pi E5$ beam line
- Muon momentum 29 MeV/c

The layout of *π***E5**

Beam studies

Optimization of the beam elements:

- Wien filter for μ /e separation
- Solenoid to couple beam and spectrometer
- Degrader to reduce the momentum for a 150 µm target

Intermediate results:

	U-version	Z-version	dis
• Rµ (total)	1.3*10 ⁸ μ⁺/ <i>s</i>	1.3*10 ⁸ μ⁺/ <i>s</i>	
• Rµ (after filter)	7.3*10 ⁷ μ⁺/s	9.5*10 ⁷ μ⁺/s	
• R_{μ} (after solenoid)	σ _v ≈6.5mm, σ _H ≈5.5m	m to be studied	
• µ/e separation	11 σ	7σ	OK

Final measurements on Z-branch are planned in Apr/May 2003 Design of the transport solenoid is started

COBRA spectrometer

COnstant Bending RAdius (COBRA) spectrometer

• Constant bending radius independent of emission angles

• High p_T positrons quickly swept out

M. Grassi - INFN Pisa

Gradient field

The solenoids

- $B_c = 1.26T$ current = 359A
- Five coils with three different diameter
- Compensation coils to suppress the stray field around the LXe detector
- High-strength aluminum stabilized superconductor

 thin magnet
 - $(1.46 \text{ cm Aluminum}, 0.2 X_0)$

- •"Crash" Tests completed
- •Winding completed @TOSHIBA
- •Spectrometer ready to be shipped at PSI within this year

Positron Tracker

, Drift chambers R&D (1) 🙍

 $s_{R} = 93 \pm 10 m$ OK

$s_z = 425 \pm 7 m$

(no magnetic field \Rightarrow full prototype test at PSI at the end of the year)

Drift chambers R&D (2)

- Full scale test in November
- Improved vernier strips structure (uniform resolution)
- Summary of Drift Chamber simulation

 $dP_{e^{+}} / P_{e^{+}} = 0.7 \div 0.9\%$ $dq_{e^{+}} = 9 \div 12 \, mrad$

$$dx_{orig} = 2.1 \div 2.5 mm$$

La Thuile - March 15th , 2003

Positron Timing Counter **BC404** (t_@)R $(t_z)_R$ mpact Point (to)L $(t_z)_I$ 110

- Two layers of scintillator read by PMTs placed at right angles with each other Outer: timing measurement Inner: additional trigger information
- Goal σ_{time} ~ 40 psec (100 ps FWHM)

Timing Counter R&D

 $\sigma_{\text{time}} \sim 60 \text{psec}$ independent of incident position • σ_{time} improves as ~1/vNpe \Rightarrow 2 cm thick OK

La Thuile - March 15th , 2003

Liquid Xe calorimeter

LXe performance

Energy resolution strongly depends on optical properties of LXe

- Complete MC simulations
- At l_{abs} we have the resolution is dominated by photostatistics FWHM(E)/E $\approx 2.5\%$ (including edge effects)
- At $\lambda_{abs} \approx L_{det}$ limits from shower fluctuations + detector response \Rightarrow need of reconstruction algorithms

 $FWHM(E)/E \approx 4.5\%$

La Thuile - March 15th , 2003

The Large Prototype (LP)

•40 × 40 × 50 cm³
•228 PMTs, 100 litres Lxe (the largest in the World)

Purpose

- Test cryogenic operation on a long term and on a large volume
- Measure the Lxe properties
- Check the reconstruction methods
- Measure the Energy, Position and Timing resolutions

with:

- Cosmic rays
- α-sources
- 60 MeV e⁻ from KSR storage ring
- 40 MeV γ from TERAS Compton Backscattering
- e^+ and 50 MeV γ from π° at PSI

M. Grassi – INFN Pisa

LEDs 🔿

LP: LXe optical properties

•First tests showed that the number of scintillation photons was MUCH LESS than expected

- •It improved with Xe cleaning: Oxysorb + gas getter + re-circulation (took time)
- •There were a strong absorption due to contaminants (mainly H_2O)

LP: Radioactive background

- α -trigger with 5×10⁶ gain
- Geometrical cuts to exclude α -sources
- Energy scale: α -source
 - ²⁰⁸Tl (2.59±0.06) MeV
 - 40 K (1.42 ± 0.06) MeV
 - ²¹⁴Bi ²⁰⁸Tl ??
- uniform on the front face
- few 10 min (with non-dedicated trigger)
- nice calibration for low energy γ 's

La Thuile - March 15th , 2003

Timing resolution test

 $\sigma_{t} = (\sigma_{z}^{2} + \sigma_{sc}^{2})^{1/2} = (80^{2} + 60^{2})^{1/2} \text{ ps} = 100 \text{ ps} \text{ (FWHM)}$

 $\boldsymbol{\sigma}_{z}$ Time-jitter due to photon interaction point

 σ_{sc} Scintillation time and photon statistics

Measurement of σ_{sc}^2 with 60 MeV electron beam

our goal

Trigger Electronics

•Uses easily quantities: 20 board 2 boards LXe inner face $\cdot \gamma$ energy (312 PMT •Positron- γ coincidence in time and LXe lateral 1 board 48 1 board direction faces (488 PMT: 4 •Built on a FADC-FPGA architecture to 1 fan-in) 2 x 48 •More complex algorithms implementable boards <mark>2</mark> x 48 Timing counters (160 PMT VME 6U Beam rate $10^8 \, \mathrm{s}^{-1}$ * VME 9ĽJ Fast LXe energy sum > 45MeV 2×10³ s⁻¹ g interaction point (PMT of max charge) Design and simulation of type1 board completed e⁺ hit point in timing counter time correlation γ - e⁺ 200 s⁻¹ ** Prototype board delivered * angular correlation $\gamma - e^+$ 20 s⁻¹ by late spring M. Grassi - INFN Pisa 29 La Thuile - March 15th , 2003

Readout electronics

M. Grassi - INFN Pisa

La Thuile - March 15^{th} , 2003

Sensitivity Summary

Detector parameters $T = 2.6 \cdot 10^7 s$ $R_{\mu} = 0.3 \cdot 10^8 \frac{\mu}{s}$ $\frac{O}{4p} = 0.09$ $e_{e} \approx 0.9$ $e_{sel} \approx (0.9)^{3} = 0.7$ $e_{s} \approx 0.6$ Cuts at 1,4×FWHM $\mathbf{N}_{sig} = \mathbf{BR} \cdot \mathbf{T} \cdot \mathbf{R}_{\mu} \cdot \frac{\mathbf{\Omega}}{\mathbf{4n}} \cdot \mathbf{e}_{e} \cdot \mathbf{e}_{g} \cdot \mathbf{e}_{sel}$ Signal $SES = \frac{1}{T \cdot R_m} \cdot \frac{\Omega}{4 n} \cdot e_e \cdot e_g \cdot e_{sel}$ Single Event Sensitivity $\mathsf{BR}_{acc} \propto \mathsf{R}_{m} \times \Delta \mathsf{E}_{e} \times \Delta \mathsf{E}_{o}^{2} \times \Delta J_{eo}^{2} \times \Delta \mathsf{t}_{eo}^{2} \approx 3 \times 10^{-14}$ Backgrounds $BR_{corr} \approx 3 \times 10^{-15}$ Upper Limit at 90% CL BR $(\mu \rightarrow e\gamma) \approx 1 \times 10^{-13}$ 4 events (P = 2×10^{-3}) correspond BR = 2×10^{-13} Discovery

Summary and Time Scale

- The experiment may provide a clean indication of New Physics
- Measurements and detector simulation make us confident that we can reach the SES of 4 \times 10⁻¹⁴ to $\mu \rightarrow e\gamma$ (BR 10⁻¹³)
- Final prototypes will be measured within November 2003
 - + Large Prototype for energy, position and timing resolutions of γs
 - Full scale Drift Chamber
 - + $\mu\text{-}Transport$ and degrader-target
- Final approval requested to INFN-CSN1
- Tentative time profile

	' Lol	Lol Proposal			document how						
	Planning			R & D			Assem	bly	Data 7	aking	
	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	,
	More details at			http://meg.psi.ch http://meg.pi.infn.it http://meg.icepp.s.u-tokyo.ac.jp							
FN P	isa			32			La Thu	ile - <i>I</i>	March	15 th , 2	003