Search for Higgs bosons and new physics at LEP

Pablo García-Abia (Madrid-CIEMAT)

On behalf of the LEP Collaborations:

Les Rencontres de Physique de la Vallée d'Aoste,

La Thuile, March 14, 2003

End of data taking at LEP on December 2000

Many interesting results presented in several occasions:

Higgs, SUSY, exotica...

I review a small set of selected topics

- Standard Model Higgs (MSSM Higgs)
- Gluino and squark search
- Extra dimensions
- Search for branons

Final results on the SM Higgs boson search

FINAL LEP RESULTS

Search for the Standard Model Higgs boson at LEP, CERN-EP/2003-??, to be submitted to Phys. Lett. B

All LEP experiments published their final results:

ALEPH Collab., R. Barbate et al., Phys. Lett. B 526 (2002) 191

DELPHI Collab., J. Abdallah et al., CERN-EP/2003-008, to be published in Eur. Phys. J. C

L3 Collab., M. Acciarri et al., Phys. Lett. B 517 (2001) 319

OPAL Collab., G. Abbiendi et al., CERN-EP/2002-059, to be published in Eur. Phys. J. C

Higgs production at LEP

Higgs and Z decay branching ratios

Topology of the final states

About 80% of the final states exploited

Assuming:

 $egin{array}{rll} \sqrt{s} &=& 207 \,\, {
m GeV} \ {\cal L} &=& 500 \,\, {
m pb}^{-1} \ arepsilon &=& 50 \,\, \% \end{array}$

Expected signal events for a $m_{\rm H} = 115~{
m GeV}$ Higgs:

4-jet	=	6.5
missing energy	=	1.9
taus	=	1.0
leptons (e+ μ)	=	0.6
All channels	=	10

The main backgrounds are:

 $\mathrm{e^+e^-}
ightarrow \mathrm{q} \mathrm{ar{q}}(\gamma), \mathrm{W^+W^-}$ and ZZ

B-tagging is essential

Few hundred background events expected

Selection of ZZ events

A tipical Hqq event

A tipical $H\nu\bar{\nu}$ event

Combination of channels

The shape of the distributions depends on the Higgs mass hypothesis !

LEP combined s/b distribution

Some events at high values of s/b for $m_{\rm H}$ = 115 GeV

Likelihood Ratio test-statistic:

$$Q = rac{\mathcal{L}(s+b)}{\mathcal{L}(b)}$$

Each bin (i) in the final variable is treated as a Poisson counting experiment:

$$\ln(Q) = -s_{tot} + \sum\limits_{i=1}^{N} n_i \ln\left(1 + rac{s_i}{b_i}
ight)$$

In the high statistics limit:

 $-2\ln(Q)
ightarrow \Delta\chi^2$

LEP combined -2In(Q)

-2ln(Q) for fixed m_H values

Significant discriminating power of the combined LEP data for $m_{\rm H}=110~{
m GeV},$ which is rapidly decreasing for higher masses.

-2In(Q) per experiment

-2In(Q) per channel

The excess is concentrated on the 4-jet channel

Compatibility with the background

$1 - CL_b$ per experiment

$1-\mathsf{CL}_b \text{ per channel}$

The excess around 95-100 GeV is not restricted to the 4jet channel !!

Limit on the Higgs mass

No evidence for a SH Higgs signal

Mass limits at 95% confidence level

Observed 114.4 GeV Expected 115.3 GeV

The Higgs sector of the MSSM

Two Higgs doublets. CP conservation is assumed.

Physical Higgs bosons: h and H (CP-even), A (CP-odd) and H^\pm

Processes at LEP: ee \rightarrow Zh ($\sigma \sim \sin^2(\beta - \alpha)$) ee \rightarrow hA ($\sigma \sim \cos^2(\beta - \alpha)$)

Almost the same analyses as for the SM Higgs (some new channels)

The same combination procedure and statistical method.

× 200

Test for MSSM Higgs using constrained model: $M_{
m SUSY}, M_2, \mu, A, aneta, m_{
m A}, m_{ ilde{
m g}}$

• no-mixing scenario: no mixing between scalar partners of $t_{
m L}$ and $t_{
m R}$

$$egin{aligned} M_{
m SUSY} &= 1 \;\; {
m TeV}, M_2 = 100 \;\; {
m GeV}, \mu = -200 \;\; {
m GeV}, \ X_t &\equiv A - \mu \coteta = 0, 0.4 < aneta < aneta < 50 \ 4 \;\; {
m GeV} < m_{
m A} < 1 \;\; {
m TeV}, m_{ ilde{
m g}} = 800 \;\; {
m GeV} \end{aligned}$$

• \mathbf{m}_{h}^{\max} scenario: yield maximal value of m_{h} in the model

same parameters as "no-mixing" except $X_t = 2 M_{\rm SUSY}$, $\tan \beta < 30$

most conservative range of excluded $\tan\beta$ for fixed values of m_t , $M_{\rm SUSY}$

• large μ scenario: the Higgs boson h does not decay in b quark pairs

$$M_{
m SUSY} = 400~{
m GeV}, M_2 = 400~{
m GeV}, \mu = 1~{
m TeV}, \ X_t = -300~{
m GeV}, 4~{
m GeV} < m_{
m A} < 400~{
m TeV}, m_{ ilde{
m g}} = 200~{
m GeV}$$

CL_b in the (m_h,m_A) plane

$1-\text{CL}_{b}$ and CL_{s} for $m_{h}\approx m_{A}$

LEP 88-209 GeV Preliminary

 2σ excess at $m_h \approx 97~{
m GeV}$ mainly due to data taken at 189 GeV

Exclusion for the m_h-max scenario

• \mathbf{m}_h^{\max} scenario:

 $\begin{array}{l} m_h > 91.0 \ \ GeV \ (94.6 \ \ GeV) \\ m_A > 91.9 \ \ GeV \ (95.0 \ \ GeV) \end{array}$

0.5 < aneta < 2.4 for $m_t \le 174.3$ GeV (0.5 < aneta < 2.6)

• no-mixing scenario:

 $\begin{array}{l} m_h > 91.5 \ \, GeV \, (95.0 \ \, GeV) \\ m_A > 92.2 \ \, GeV \, (95.3 \ \, GeV) \end{array}$

 $0.7 < \tan \beta < 10.5$ (0.8 < $\tan \beta < 16$) Scalar-quark search at LEP energies is relevant as the scalar top could be the LSP partner of all SM fermions

Previous results assume the LSP is the lightest neutralino, yielding an absolute limit of $m_{\tilde{t}}<63~{\rm GeV}~(95\%~CL)$

This limit does not apply if LSP is the gluino or the scalar quark (LSP or "sufficently" stable)

The topology of the signal events (missing energy) differ from that in the standard SUSY searches (LSP=neutralino)

Search for missing energy and for stable heavy charged particles are well suited for the search of sqarks and gluinos:

- $\bullet~e^+e^- \to q\bar{q}\tilde{g}\tilde{g}$, with a gluon splitting into a pair of stable gluinos (LEP1)
- $e^+e^- \rightarrow q\bar{q}\tilde{q}\bar{\tilde{q}}$, with a gluon splitting into a pair of stable squarks (LEP1)
- \bullet pair production of stable squarks $e^+e^- \to \tilde{t}\bar{\tilde{t}}$ and $\tilde{b}\bar{\tilde{b}}$ (LEP2)
- pair production of scalar top decaying in stable gluinos, $e^+e^- \rightarrow \tilde{t}\bar{\tilde{t}} \rightarrow c\tilde{g}\bar{c}\tilde{g}$ (LEP2)

Cover all possible configurations in the plane $(m_{\tilde{g}}, m_{\tilde{q}})$ with a sqark or a gluino LSP

The observed events in all the analyses are in agreement with the expectations from standard model processes

Results on gluino and stop search

- \bullet gluino LSP excluded for $\rm m_{\tilde{g}} < 25.6~GeV$
- \bullet down-type squark LSP excluded for ${\rm m}_{\tilde{q}} < 92~{\rm GeV}$
- \bullet up-type squark LSP excluded for $m_{\tilde{q}} < 97~{\rm GeV}$
- \bullet if LSP is a gluino, sbottom NLSP excluded for $\rm m_{\tilde{b}} < 26~GeV$
- \bullet if LSP is a gluino, stop NLSP excluded for $m_{\tilde{t}}<78~{\rm GeV}$ otherwise $m_{\tilde{t}}<63~{\rm GeV}$

These limits apply in any supersymmetric model in which squarks and gluinos are long-lived

- $\bullet~M_{P\ell} \sim 10^{19}~GeV \gg m_{ew} \sim 10^2~GeV$
- \bullet Standard Model tested at $1/m_{\rm ew}$
- \bullet Gravity far from being tested at $1/M_{P\ell}$

Arkani-Hamed et al. PLB 544 (1988) 263

- \bullet The scale of Gravity, $M_{\rm S},$ is of order $m_{\rm ew}$
- There are n extra dimensions of size R shuch that with Gauss' theorem:

 $\mathrm{M_{P\ell}}^2 \sim \mathrm{R}^n \, \mathrm{M_S}^{n+2}$

 ${
m M_S} \sim 1 {
m TeV} \ n=1 {
m R} \sim {
m Solar System} \ {
m M_S} \sim 1 {
m TeV} \ n=2 {
m R} \sim 1 {
m mm}$

Low Scale Gravity

Spin 2 gravitons propagate in these extra dimensions interacting with Standard Model particles in our four ones

$$rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(s,t) = rac{\mathrm{d}\sigma^{\mathrm{SM}}}{\mathrm{d}\Omega}(s,t) +$$

$$+rac{oldsymbol{\lambda}}{\mathrm{M}_{\mathrm{S}}^4}lpha ext{ Interference }(s,t)+rac{oldsymbol{\lambda}^2}{\mathrm{M}_{\mathrm{S}}^8}eta ext{ Low Scale Gravity }(s,t)$$

 λ depends on the (unknown) full theory, use ± 1 for different signs in interference

LSG from LEP results

K.Agashe & N.G.Deshpande Phys. Lett. B 465 (1999) 60

March 14, 2003

The $e^+e^- \rightarrow \gamma\gamma$ differential cross section

The $e^+e^- \rightarrow e^+e^-$ differential cross section

High sensitivity as large interference with SM t-channel

Combined LEP limit: $M_S > 1$ TeV for $\lambda = \pm 1$

REFERENCE SIZES	δ	λ=+1	λ=-1
1 light Year ~ 10 ⁺¹⁶			
••••••• 1 AU = $1.5 \times 10^{+11}$	1	$1.7 \times 10^{+13}$	1.6 x 10^+
Typical cell size $\sim 10^{-5}_{-7}$	2	1.7×10^{-3}	1.6 x 10
DNA Molecule size ~ 10 Typical Molecule size ~ 10	3	7.7×10^{-9}	7.5 x 10 ⁻
Bohr Radius = 0.53×10^{-10}	4	1.6 x 10⁻¹¹	1.6 x 10 ⁻
λ_{COMPTON} of the electron = 3.8 x 10 ⁻¹³	5	4.1×10^{-13}	4.1 x 10
-14	6	3.5×10^{-14}	3.5 x 10
$\begin{array}{c} \textcircled{\begin{tabular}{lllllllllllllllllllllllllllllllllll$	7	6.1 x 10 ⁻¹⁵	6.0 x 10

Search for branons in L3

A branon $\hat{\pi}$ is a (pseudo-)Goldstone boson, which appears when a higherdimensional space-time symmetry is spontaneously broken by the presence of a brane. They are kind of new scalar field.

The branon mass is related to the metric properties of the extra space. They are massles only in simple cases like flat space.

The branon interaction presents vertices coupled to SM diagrams:

In L3, branons are searched for in the processes $e^+e^- \rightarrow \hat{\pi}\hat{\pi}\gamma$ and $\hat{\pi}\hat{\pi}Z$. Additional cross section parametrised in terms of n (number of branons), M (mass) and f (brane tension scale).

Search for branons in single γ

Similar analysis performed for the channel $e^+e^- \rightarrow \hat{\pi}\hat{\pi}Z$.

Exlusion limits in the M-f plane

For M = 0, f > 197 GeV. Restrictions on f disappear for M > 100 GeV. Limits from $e^+e^- \rightarrow \hat{\pi}\hat{\pi}Z$ are less stringent: f > 48 GeV for M = 0

No clear indication for new physics at LEP

Search for Higgs bosons in different phenomenological scenarios continues: flavour independent, fermiophobic, invisible...

as well as the search for SUSY signatures under the scope of different models

New LEP combined results will come soon