Theory of rare kaon decays

Giancarlo D'Ambrosio

Istituto Nazionale di Fisica Nucleare, Sezione di Napoli

Les Rencontres de Physique, La Thuile 13th March 2003

Outline

- Introduction
- $K \to \pi \nu \bar{\nu}$
- Minimal Flavour Violation (MFV)
- $K \to \pi \ell \bar{\ell}$
- $K_L \to \mu \overline{\mu}$
- Conclusions

Introduction

• The SM with 3 families predicts weak interactions with an unitary matrix V_{ij} : 3 angles and 1 phase (CP violating)

$$Wolfenstein \ V_{ud}, V_{cb}, V_{td} \ \downarrow \ \lambda, A\lambda^2, A\lambda^3(1-
ho-i\eta)$$

- FCNC only at 1-loop
- B-physics, V_{ij} -unitarity test: possible but not easy
- The area of all possible CKM-unitarity triangles is an invariant:

$$|J_{CP}| \stackrel{Wolfenstein}{\simeq} A^2 \lambda^6 \eta$$

- As we shall see $B(K_L \to \pi^0 \nu \overline{\nu})$ will measure this area
- Already $B(K^+ \to \pi^+ \nu \overline{\nu})$ tests B-physics (ΔM_B , β)

see Isidori talk

$K \to \pi \nu \overline{\nu}$

$$A(s \to d\nu\overline{\nu}) \sim \overline{s}_L \gamma_\mu d_L \quad \overline{\nu}_L \gamma^\mu \nu_L \; \times \left[\sum_{q=c,t} V_{qs}^* V_{qd} \; m_q^2 \right]$$

$$\left[A^2\lambda^5 \ (1-\rho-i\eta)m_t^2+\lambda m_c^2\right]$$

Littenberg

$$\Gamma(K_L \to \pi^0 \nu \overline{\nu}) \quad \begin{cases} \text{CP violating} \\ \Rightarrow J = A^2 \lambda^6 \eta \\ \text{Only } top \end{cases}$$

•
$$K^+$$
: $t > \text{charm} \stackrel{\text{NLO}-\text{QCD}}{\Longrightarrow} K^+ \mathcal{O}(5\%)$, $K_L \mathcal{O}(1\%)$

•
$$K_{l3} \stackrel{SU(2) ext{isospin}}{\Longrightarrow} \langle \pi | \overline{s} \gamma_{\mu} d | K \rangle \ (\leq 1\% \text{ Marciano-Parsa})$$

• SM- BR $(K \to \pi \nu \overline{\nu})$

Buchalla-Buras

 K^+ (0.72 ± 0.21) · 10⁻¹⁰

$$K_L: (2.8 \pm 1.0) \cdot 10^{-11}$$

 $\mathsf{CKM}\ 10\%\ \mathsf{accuracy}$

Kopio,KEK

• 2 K^+ candidates for BNL-E787 E949 should improve

$$B(K^+) = (1.57^{+1.75}_{-0.82}) \cdot 10^{-10}$$

• K_L Model-independent bound, based on SU(2)properties dim-6 operators for $\overline{s}d\overline{\nu}\nu$ Grossman-Nir

$$B(K_L) \leq \frac{\tau_L}{\tau_+} \times B(K^{\pm}) < 1.7 \times 10^{-9}$$
 at 90%*C*.*L*.

Impact of BNL-E787 in flavour physics

G.D. Isidori

- two scenarios
 - NP in $\overline{s}d\overline{\nu}\nu \stackrel{NP}{\Longrightarrow} \overline{b}s\overline{\nu}\nu$
 - NP in $B \overline{B}$ -mixing

Effective supersymmetry, 3 s-family lighter ≤ 1 TeV, why?

Minimal Flavour violation

- naturalness ? From $K \overline{K}$ -mixing $\Longrightarrow \Lambda_{NP} > 100$ TeV, stability of the Higgs potential $\Longrightarrow \Lambda_{NP} < 1$ TeV
- NP is not generic, but has a symmetry (MFV), which generalizes the GIM mechanism. We want some global symmetry (G_F) allowing only th SM Yukawas

$$\mathcal{L} = \bar{Q}_L \mathbf{Y}_D D_R H + \bar{Q}_L \mathbf{Y}_U U_R H_c + \bar{L}_L \mathbf{Y}_E E_R H$$

 $G_F = U(3)^5$: 3 families of Q, U, D, L, E_R

Chivukula-Georgi

 $\Lambda_{NP} > 100$ TeV: All allowed

$$\Delta F = 2 \qquad \mathcal{L}_{NP} \stackrel{U(3)^5}{\Longrightarrow} \mathcal{L}_{MFV} =$$

$$= \frac{C}{\Lambda_{MFV}^2} \left[\frac{(V_{td}^* m_t^2 V_{tb})^2}{v^4} (\bar{d}_L \gamma^\mu b_L)^2 + \frac{(V_{td}^* m_t^2 V_{ts})^2}{v^4} (\bar{d}_L \gamma^\mu s_L)^2 \right]$$

• Fixing $C \sim 1 \Longrightarrow$ bound on Λ^2_{MFV}

Buras et al., Nir et al., G.D., Giudice, Isidori, Strumia

We write the most general dim-6 *L* (a la Fermi) consistent con MFV and determine bounds/correlations
 G.D.,Giudice,Isidori,Strumia

MFV main Λ [TeV] dim-6 operator observables + $\epsilon_K, \quad \Delta m_{B_d}$ 5.0 \mathcal{O}_0 6.4 $B \to X_s \gamma$ \mathcal{O}_{F1} 8.3 13.4 $B \to (X)\ell\bar{\ell}, \quad K \to \pi\nu\bar{\nu}, (\pi)\ell\bar{\ell} \\ B \to (X)\ell\bar{\ell}, \quad K \to \pi\nu\bar{\nu}, (\pi)\ell\bar{\ell}$ $\mathcal{O}_{\ell 1}$ 3.12.7 $\mathcal{O}_{\ell 2}$ 3.43.0 $B \to (X)\ell\bar{\ell}, \quad K \to \pi\nu\bar{\nu}, (\pi)\ell\bar{\ell}$ \mathcal{O}_{H1} 1.61.6

Bounds on MFV operators

Minimal Flavour violation and $K \rightarrow \pi \nu \bar{\nu}$

• Future experiments, in particular $K_L \rightarrow \pi^0 \nu \bar{\nu}$ will probe deeply MFV

 $\bullet~$ Up: 10% accuracy on the CKM , Down: 1%

 $K_L(p) \rightarrow \pi^0(p_3)\gamma(q_1)\gamma(q_2)$

Lorentz + gauge invariance ⇒

Different gauge structure $\Rightarrow B \neq 0$ at $z \rightarrow 0$ (collinear photons).

Crucial role in $K_L \rightarrow \pi^0 e^+ e^-$

Morozumi et al, Flynn Randall

 $\int y = \frac{p \cdot (q_1 - q_2)}{m_{-1}^2}$

Sehgal Heiliger, Ecker et al., Donoghue et al.

 π^0

A suppressed by m_e/m_K B is not

Ecker, Pich, de Rafael Cappiello,G.D

$$\alpha_1 = \frac{\beta}{2} = -\frac{\alpha_2}{3} = -4a_V \sim 2$$
 n.d.a.~0.2

NA48, 02

 $a_V = -0.46 \pm 0.03 \pm 0.04$ Br $= 1.36 \pm 0.03 \pm 0.03$

Left-over questions

			$lpha_1$	$lpha_2$	eta
•	Gabbiani, Valencia	$3 {\rm parameters} {\rm fit}$	0	1.7	-5
		$(\mathrm{VMD}$	$-4a_V$	$12a_V$	$-8a_V)$

Taking **B** from rate and spectrum fit

large B $B(K_L \to \pi^0 e^+ e^-)_{disc} \sim 1.5 \cdot 10^{-12}$

 $\mathsf{B}(K_L o \pi^0 e^+ e^-)_{disc}$ expt. question

Dispersive: $\gamma\gamma$ off-shell?

Donoghue-Gabbiani: particular form factor, a factor 4 \sim 5 larger

Important to measure $K_L \rightarrow \pi^0 \gamma \gamma^*$ (KTeV + NA48)

• No short distance contributions

Gaillard-Lee

No $O(p^2)$

• Neutral particles
$$(K_S) \Rightarrow$$

No
$$O(p^4) \ {
m CT}: \ F_{\mu
u}F^{\mu
u}\langle\lambda_6 Q U^+ Q U
angle$$

• Loop contribution finite

$${\sf Br}_{\chi {
m PT}}(K_S o \gamma \gamma){=}2.1{\cdot}10^{-6}$$
 (G.D. and Espriu 86, Goity 87)

$$(2.78\pm 0.072)\cdot 10^{-6}_{
m (NA48~'02)}$$

$$G_8$$
 from $K_S \to \pi \pi$

scale independent and unambigous $\chi {\rm PT}$ prediction

•
$$O(p^6)_{\rm CT}$$
 No VMD $\Rightarrow \frac{A^{(6)}}{A^{(4)}} \sim \frac{m_K^2}{(4\pi F_\pi)^2} \sim 0.2$
 $F^{\mu\nu}F_{\mu\nu}\langle\lambda_6 Q^2 \mu M U^+\rangle$ (Not $\frac{m_K^2}{m_\rho^2} \sim 0.4$)

 $K^{\pm}(K_S) \rightarrow \pi^{\pm}(\pi^0)\ell^+\ell^-$

• short distance << long distance

• 1 " γ " amplitude determined by form factor W

$$W^i = G_F m_K^2(a_i + b_i z) + W^i_{\pi\pi}(z) \qquad \quad i = \pm, S$$

$$a_i, b_i \sim O(1), \qquad z = rac{q^2}{m_K^2}$$

- Observables $\Gamma(K^+ \to \pi^+ e^+ e^-)$, $\Gamma(K^+ \to \pi^+ \mu \overline{\mu})$, slopes
- $a_i \quad O(p^4)$ Ecker, Pich, de Rafael
- $b_i = O(p^6)$ G.D., Ecker, Isidori, Portoles
- a_+, b_+ in general not related to a_S, b_S

Expt. E865

•
$$K^+ \to \pi^+ e^+ e^-$$
: $\begin{array}{cc} a_+ = -0.586 \pm 0.010 & \text{just linear slope} \\ b_+ = -0.655 \pm 0.044 & (W_{\pi\pi} = 0) \\ \frac{\chi^2}{n_{dof}} \sim \frac{13.3}{18} & \frac{\chi^2}{n_{dof}} \sim \frac{22.9}{18} \end{array}$

• $K^+ \to \pi^+ \mu \overline{\mu}$:

Br = $(9.22 \pm 0.77) \cdot 10^{-8}$ consistent with theory not $(5. \pm 1.) \cdot 10^{-8}$ (E787, '97)

Problems: $\begin{array}{ccc} a_i & b_i & \text{same phenomenological size} \\ p^4 & p^6 & \text{different theoretical order} \end{array}$

Probably explained by large VMD

Then we can just parameterize

$$Br(K_S \to \pi^0 e^+ e^-) = 4.6 \times 10^{-9} a_S^2$$

not predicted but dynamically interesting

HyperCP has confirmed E865 (02) regarding $K^+ \rightarrow \pi^+ \mu \overline{\mu}$ and put a bound on the CP asymmetry (≤ 0.1)

 $K_L
ightarrow \pi^0 e^+ e^-$: summary ${
m Br}(K_L
ightarrow \pi^0 e^+ e^-) \le 5 \cdot 10^{-10}$ KTeV

• V-A \otimes V-A \Rightarrow $\langle \pi^0 e^+ e^- | (\bar{s}d)_{V-A} (\bar{e}e)_{V-A} | K_L \rangle$ violates CP

Possible large interference: $a_S < -0.5$ or $a_S > 1$

$$Br(K_L \to \pi^0 e^+ e^-)_{CPV} = \left[15.3 \frac{a_S^2}{s} - 6.8 \frac{Im\lambda_t}{10^{-4}} a_S + 2.8 \left(\frac{Im\lambda_t}{10^{-4}}\right)^2\right] \cdot 10^{-12}$$

short distance probe even for a_S large

$K_L \to \mu \overline{\mu}$

 $\begin{array}{l} \operatorname{Br}(K_L \to \mu \overline{\mu}) = |ReA|^2 + |ImA|^2 = (7.18 \pm 0.17) \cdot 10^{-9} \\ \swarrow & \swarrow & AGS \ 871 \\ Re(A_{\mathrm{SD}} + A_{\mathrm{LD}}) & |ImA|^2 = (7.1 \pm 0.2) 10^{-9} \\ \end{array}$ Good determination of $A_{\mathrm{LD}} \Rightarrow A_{\mathrm{SD}} \Rightarrow$ SM test

Large $N_c + U(3)_L \otimes U(3)_R$

Gomez Dumm-Pich

Local+non-local contribution $|A_{SD}|^2 < 2.9 \cdot 10^{-9}$ SM $(0.9 \pm 0.4) \cdot 10^{-9}$ Buchalla-Buras B $(K_L \rightarrow e\bar{e}) = (9.0 \pm 0.4) \cdot 10^{-12}$ BNL871 $(8.7^{+5.7}_{-4.1}) \cdot 10^{-12}$

 $1/{\rm N}$ corrections & symmetry breaking? Large in $K_L \rightarrow \gamma \gamma$

Low energy form factor + matching with VMD to QCD (G.D, Isidori, Portoles)

 α fixed from $K_L \rightarrow \gamma \gamma^*$

 β from $K_L \rightarrow e^+ e^- \mu \bar{\mu}$ (KTeV, NA48, not yet) Matching with QCD $q_1^2, q_2^2 \rightarrow \infty$ imposes

From Littenberg hep-ex/0010048

Conclusions

- $K_L \rightarrow \pi^0 \nu \bar{\nu}$ a measurement with 10% accuracy \Rightarrow would push to 10 TeV the validity of SM
- $K_L \rightarrow \pi^0 e\bar{e}$: if NA48 will tell us that $K_S \rightarrow \pi^0 e\bar{e}$ (a_S) is in an interesting interference range is worth pursuing this channel
- NA48 and KLOE:
 - $K_S \rightarrow \pi^0 e\bar{e}$ very interesting (a_S)
 - CP violation in $K^+ \to 3\pi/K^+ \to \pi^+\pi^0\gamma$ challenge
 - $K^+ \to \pi^+ \gamma \gamma / K^+ \to \pi^+ \pi^0 \gamma$: chiral tests
- $K_S \to \gamma \gamma$ best chiral test, h.o. established: $\leq 15\%$ amplitude
- $K_L \rightarrow \mu \bar{\mu}$: full form factor close to be measured