Results on hadronic and semileptonic B decays from BaBar

Stefania Xella Hansen

Rutherford Appleton Lab, UK

On Behalf of the BaBar Collaboration

March 3-9, 2002
La Thuile, Val d'Aosta

B factory performance

-PEP-II top luminosity: $4.51 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (design 3.0×10^{33})
-Top recorded L/24h: $303.4 \mathrm{pb}^{-1}$

Analyses shown here use maximum 20/fb (run1+run2)

Physics results presented

Semileptonic B decays

- Measurement of $\operatorname{Br}\left(B^{0} \rightarrow \rho^{-} e^{+} v\right)$
- Measurement of $\left|\mathrm{V}_{\mathrm{ub}}\right|$
- Measurement of inclusive spectrum and branching ratio
- Measurement of $\left|\mathrm{V}_{\mathrm{cb}}\right|$

Hadronic B decays

- Measurement of $\mathrm{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \pi^{-}\right) / \mathrm{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}\right)$
- Measurement of $\operatorname{Br}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{*+} \mathrm{D}^{*-}\right)$ and R_{t}

Electron ID in BaBar

- Match track to EMC cluster
- $0.89<\mathrm{E} / \mathrm{p}<1.2$
- EM shower shape requirements
- $\mathrm{dE} / \mathrm{dx}$ and DIRC angle consistent with electron hypothesis

Muon ID in BaBar

- Muon ID

- \# interaction lenghts in I FR >2.2
- Difference in measured and expected int. Length <1
- Match between extrapolated track and IFR hits
- Requirements on average and spread of \# of I FR hits per layer

$B^{0} \rightarrow \rho^{-} e^{+} v$

This mode allows to access the CKM element |Vub| rather cleanly, wrt to an inclusive $\mathrm{B}->\mathrm{X}_{\mathrm{u}} \mathrm{ev}$ analysis, where strong interactions have a big impact

The theoretical challenge for the extraction of Vub is the calculation of the form factors describing the spectrum of the decay

The experimental challenge is the rather large background, from $b \rightarrow c$ in $\mathrm{E}_{\text {lept }}<2.35 \mathrm{GeV}$ and from continuum in $\mathrm{E}_{\text {lept }}>2.35 \mathrm{GeV}$

For this reason, analysis split in two energy ranges:
HILEP $2.35 \mathrm{GeV}<\mathrm{E} * \mathrm{e}<2.7 \mathrm{GeV}$
LOLEP $2.0 \mathrm{GeV}<\mathrm{E}^{*} \mathrm{e}<2.35 \mathrm{GeV}$

B 0
 $\rightarrow \rho^{-} \mathrm{e}^{+} v$

LOLEP

Analysis based on the 1999-2000 statistics: $20.2 \mathrm{fb}^{-1}$ (on peak) and $2.6 \mathrm{fb}^{-1}$ (off peak)

マ 2-dim extended maximum likelihood fit on data on and off peak and on MC data on HILEP,LOLEP and on the 5 channels ($\rho^{+}, \rho^{0}, \omega$, $\pi^{0}, \pi^{+)}$in the variables $\Delta \mathrm{E}=$ Ehad+Ee+|pv|-Ebeam (with $|p v| \sim p$ miss), or $M(\pi \pi) / M(\pi \pi \pi)$
9 free parameters, among which
HILEP

$\mathrm{B}^{0} \rightarrow \rho^{-} \mathrm{e}^{+} v$

```
tmp_mnthome/usr201/mnt/serfass/vub/study/q2_hiep
Creator:
PTeview: 
l
Comment:
T This EPS picture will print to a
other types of printers.
```

Results of the fit:

$$
\begin{aligned}
& \mathrm{Br}\left(\mathrm{~B}^{0} \rightarrow \rho \mathrm{ev}\right)=(2.97 \pm 0.56) 10^{-4} \\
& \operatorname{Br}\left(\mathrm{~B}^{0} \rightarrow \pi \mathrm{ev}\right)=(0.34 \pm 1.02) 10^{-4}
\end{aligned}
$$

Systematics about 16\%, main contribution from data cuts and background b->u description

The results need to be extrapolated to the full energy range for leptons (using a theoretical model, hence introducing a theory dependent uncertainty)

$$
\begin{aligned}
& \operatorname{Br}(\text { BO-> } \rho-e+v)=\left(3.26 \pm 0.65(\text { stat })^{+0.63}{ }_{-0.65} \text { (syst) } \pm 0.33 \text { (theo)) } 10^{-4}\right. \\
& \mid \text { Vub } \mid=\left(3.57 \pm 0.36^{\left.+0.33_{-0.38} \pm 0.60\right) 10^{-3}}\right.
\end{aligned}
$$

$B \rightarrow X e v$

Inclusive Semileptonic B decays provide a straight forward way to measure the coupling to the charged weak current via V_{cb}

Theory prediction for branching ratio does not reproduce the measured values. Any other precise measurement of this inclusive Br is most valuable

Inclusive B semilept spectrum! e from Btag decay

A measurement of like \& un-like sign ee pairs gives model independent measurement of inclusive B semileptonic spectrum

$B \rightarrow X e v$

Analysis based on the 1999-2000 statistics: $4.13 \mathrm{fb}^{-1}$ (on peak) and $1 \mathrm{fb}^{-1}$ (off peak)

- tag electron 1.4
$\mathrm{GeV}<\mathrm{p}^{*}<2.3 \mathrm{GeV}$
- signal electron $\mathrm{p}^{*}>0.4 \mathrm{GeV}$
$+\cos \alpha>-0.2 \& \cos \alpha+p^{*}>1 . Q$
- average efficiency 54.5\%

Backgrounds are
$. \gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \pi^{0} \rightarrow \gamma \mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{J} / \psi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$
. Misidentified hadrons
. Cascades producing right-sign electrons
$\mathrm{B} \rightarrow \mathrm{X} \tau^{+} \nu_{\tau}, \tau^{+} \rightarrow \mathrm{e}^{+} \nu_{\mathrm{e}} \nu_{\tau}$
$\mathrm{B} \rightarrow \mathrm{D}^{+}{ }_{\mathrm{s}} \mathrm{D}, \mathrm{D}^{+}{ }_{\mathrm{s}} \rightarrow \mathrm{X}^{\prime} \mathrm{e}^{+} \nu_{\mathrm{e}}$ $\mathrm{B} \rightarrow \mathrm{D}^{\left(+^{5}\right)} \mathrm{D}^{\left({ }^{(+)}\right.} \mathrm{K}^{\mathrm{s}}, \mathrm{D} \rightarrow \mathrm{X}^{\prime} \mathrm{e}^{+} v_{\mathrm{e}}$ mistagged events

$B \rightarrow X e v$

Fully corrected electron spectrum $\operatorname{Br}(\mathrm{B} \rightarrow \mathrm{X}$ e $v)=$ (10.82 $\left.\pm 0.21_{\text {stat }} \pm 0.38_{\text {sys }}\right) \%$

Systematics dominated by unknown ccs cascade Br

$$
\begin{equation*}
\left|\mathrm{V}_{\mathrm{cb}}\right|=0.0411\left(\frac{\mathrm{Br}\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{c}} \mathrm{ev}\right)}{0.105} \frac{1.55 \mathrm{ps}}{\tau_{\mathrm{B}}}\right)^{1 / 2}\left(1.0 \pm 0.015_{\text {pert }} \pm 0.010_{\mathrm{m}_{\mathrm{b}}} \pm 0.012_{1 / \mathrm{m}_{\mathrm{Q}}^{3}}\right) \tag{1}
\end{equation*}
$$

With PDG - value for τ_{B} and $\operatorname{Br}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}}\right.$ e v) $=(1.7 \pm 0.5) \times 10^{-3}$:

$$
\left|\mathrm{V}_{\mathrm{cb}}\right|=0.0408 \pm 0.0004_{\text {stat }} \pm 0.0008_{\text {sys }} \pm 0.0020_{\text {theory }}
$$

[1] See Bigi, Shifman, Uraltsev, Ann. Rev. Nucl. Part. Science 47 (1997) 591.

Hadronic B decays

In the hadronic exclusive reconstruction, two
higly uncorrelated kinematic variables are used

- A signal region is defined around the central value of $\Delta \mathrm{E}$ and m_{ES} (2.5 or 3σ) to extract the signal yield
- Sidebands are defined outside the signal region in order to estimate background contribution

Kaon ID in BaBar

- NN based on likelihood ratios in DCH and SVT (dE/ dx), and in DI RC (compare single hits with expected pattern of cherenkov light)
- >3s K/p separation @ $0.25<p<3.4 \mathrm{GeV}$

Cherenkov angles for π and K

K

$\operatorname{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}\right) / \operatorname{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \pi^{-}\right)$

$\mathrm{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}\right)$is an ingredient of a number of methods proposed to extract the CKM angle γ in a theoretically clean way

Measurement of $\mathrm{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}\right) / \mathrm{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \pi^{-}\right)$ allows a precise measurement of $\mathrm{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}\right)$

$\mathrm{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}\right) / \mathrm{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \pi^{-}\right)$

Analysis based on the 1999-2000 statistics:
$20.7 \mathrm{fb}^{-1}$ (on peak) $+2.62 \mathrm{fb}^{-1}$ (off peak)

- D^{0} is selected in the modes:
$D^{0} \rightarrow K \pi, D^{0} \rightarrow K 3 \pi, D^{0} \rightarrow K \pi \pi^{0}$
- No PID required on bachelor h-
- $\Delta \mathrm{E}$ is calculated assigning the Kaon mass to the prompt track

$\cdot \mathrm{N}_{\mathrm{DK}}, \mathrm{N}_{\mathrm{D} \pi}$ and the background extracted with a unbinned maximum likelihood fit
-Likelihood function depends on $\Delta \mathrm{E}_{\mathrm{K}}, \mathrm{m}_{\mathrm{ES}}$ and Θ_{C} information from DIRC

$\operatorname{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}\right) / \mathrm{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \pi^{-}\right)$

The presence of the signal $B \rightarrow D^{0} K^{-}$is evident when a Kaon PID requirement is applied to the prompt track (" h ")

Averaging over the three D^{0} modes:

$$
\mathrm{R}=\mathrm{BR}\left(\mathrm{~B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}\right) / \mathrm{BR}\left(\mathrm{~B}^{-} \rightarrow \mathrm{D}^{0} \pi^{-}\right)=(8.3 \pm 0.6 \pm 0.3) \%
$$

$B^{0} \rightarrow D^{*+} D^{*-}$

This channel can be used to measure CP violation ($\sin 2 \beta$).
Several extensions to the SM predict possible different CP asymmetry in this channel and in the charmonium one, so this decay is most valuable for performing stringent tests of CP in the SM.

But $D^{*+} D^{*-}$ is a mixture of P-even and P-odd components ($A_{0}, A_{\|}, A_{\perp}$), so the CP asymmetry is diluted. One needs to measure:
$R_{t} \equiv \frac{\left|A_{\perp}\right|^{2}}{\left|A_{0}\right|^{2}+\left|A_{\|}\right|^{2}+\left|A_{\perp}\right|^{2}}$ which tells how much P-odd component exists. This is done via angular analysis

$B^{0} \rightarrow D^{*+} D^{*-}$

Analysis based on the 1999-2000 statistics:
$20.7 \mathrm{fb}^{-1}$ (on peak) $+2.4 \mathrm{fb}^{-1}$ (off peak)
-D* reconstructed via $D^{0} \pi$ and $D \pi^{0}$
-D reconstrcuted via $\mathrm{K} \pi, \mathrm{K} 2 \pi, \mathrm{~K} 3 \pi, \mathrm{~K} \pi \pi^{0}$

- signal box defined as
$|\Delta \mathrm{E}|<25 \mathrm{MeV}$
and
5.273 GeV/c ${ }^{2}<\mathrm{M}_{\mathrm{es}}<5.285 \mathrm{GeV} / \mathrm{c}^{2}$

Main systematic:
Tracking efficiency (9.4\%)

$\operatorname{Br}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{*+} \mathrm{D}^{*-}\right)=(8.3 \pm 1.6 \pm 1.2) \times 10^{-4}$

Summary of results

From semileptonic B decays

```
\(\operatorname{Br}(\mathrm{BO}->\rho-\mathrm{e}+\mathrm{v})=\left(3.26 \pm 0.65\right.\) (stat) \({ }^{+0.63}{ }_{-0.65}\) (syst) \(\pm 0.33\) (theo)) \(10^{-4}\)
```

\mid Vub $\mid=\left(3.57 \pm 0.36+0.33{ }_{-0.38} \pm 0.60\right) 10^{-3}$
$\operatorname{Br}(B \rightarrow X$ e $v)=\left(10.82 \pm 0.21_{\text {stat }} \pm 0.38_{\text {sys }}\right) \%$
$\left|\mathrm{V}_{\text {cb }}\right|=0.0408 \pm 0.0004_{\text {stat }} \pm 0.0008_{\text {sys }} \pm 0.0020_{\text {theory }}$
From hadronic B decays
$R=B R\left(B^{-} \rightarrow D^{0} K^{-}\right) / B R\left(B^{-} \rightarrow D^{0} \pi\right)=(8.3 \pm 0.6 \pm 0.3) \%$
$\mathrm{Br}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{\left.*+D^{*-}\right)}=(8.3 \pm 1.6 \pm 1.2) \times 10^{-4}\right.$
$R_{t}=0.22 \pm 0.18 \pm 0.03$

Luminosity Plans for BABAR \& PEP II

$\mathrm{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}\right) / \mathrm{Br}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \pi^{-}\right)$

effic	$D^{0} \rightarrow K \pi$	$D^{0} \rightarrow$ $K 3 \pi$	$D^{0} \rightarrow$ $K \pi \pi^{0}$
$D^{0} \pi^{-}$	49.20 .5	17.40 .4	10.20 .3
$D^{0} K$	48.10 .7	16.80 .4	10.10 .3

$B^{0} \rightarrow D^{*+} D^{*-}$

$$
R_{t}^{(0 \mathrm{~kg})}=0.29 \pm 0.04
$$

Events from sidebands
Are giving a value compatible with
 flat distribution $\mathrm{Rt}=1 / 3$

