

MINOS Update

NuMI/MINOS

Update

Robert C. Webb Physics Department Texas A&M University March 4, 2002

- Introduction Neutrino Oscillation Evidence
- Overview of NuMI / MINOS
- Physics Reach of MINOS
- Status of
 - NuMI
 - MINOS
 - Far Detector
 - Cal Det
 - Near Detector
- Summary

MINOS Physics Goals

- A next generation long baseline neutrino accelerator experiment
 - « Explore the region of oscillation parameter space indicated by the atmospheric neutrino results
- "A hotter beam over a longer baseline"
 - « Match flux and efficiency to the region of the first oscillation maximum
 - « Check the oscillation interpretation through spectral measurements
 - « Obtain improved parameter measurements
 - « Search for sub-dominate modes

MINOS Experiment

Producing the NuMI Beam at Fermilab's Main Injector

Robert C. Webb La Thuile 2002 March 4, 2002 Page 4

2.7 \cdot 10²⁰ 120 GeV Protons per year hit the target* π^+ are produced at wide range of angles Magnetic horns focus π^+

 π^+ decay to $\mu^+\nu_{\mu}$ in a long evacuated pipe Left-over π^+ shower in an absorber Rock shield ranges out μ^+

v beam travels through earth to the experiment

NuMI Horn Configurations and Beam Spectra

Robert C. Webb La Thuile 2002 March 4, 2002 Page 5

Initial running in the "Low Energy" configuration Expect ~2500 Events per "Canonical" NuMI year

Oscillation effects observable at MINOS

Robert C. Webb La Thuile 2002 March 4, 2002 Page 6

Title: (cc_rate_le.eps) Creator: (ImageMagick) Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers. Title: (tau_rates.eps) Creator: (ImageMagick) Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostSoript printer, but not to other types of printers.

v_{μ} CC Event Selection Efficiency and Background Rejection

Robert C. Webb La Thuile 2002 March 4, 2002 Page 7

With high statistics and good event efficiencies in the energy region of interest MINOS will give substantially improved oscillation parameter measurements in a 2-year run

- Near/Far extrapolation
 - « Primary Control comes from extrapolation of data from the near detector
 - « Efforts aiming at production experiments at CERN & FNAL
- Beam pointing checked by
 - « GPS & laser survey with 1km lever arm on the near site and <<1m accuracy at the FD site</p>
 - « Checked with ND beam profile, downstream hadron monitors (spot check), and muon monitors in the absorber pile and rock

Improving Limits on Other Oscillation Modes

Robert C. Webb La Thuile 2002 March 4, 2002 Page 9

- Spectrum of NC-like events in MINOS gives a handle on v_{sterile}
- An analysis of this data and disappearance data give improved constraints over current limits

NC energy distributions, Ph2le, ∆m²=0.0035 eV²

Improved Limits on Sub-dominate Mode

- Analysis uses shower shapes and energies to eliminate backgrounds
- Modest improvement over the current limits
- The limits are shown for a nominal 10kt-year exposure

The MINOS Collaboration

Robert C. Webb La Thuile 2002 March 4, 2002 Page 11

Over 200 Collaborators from 32 Institutions

Argonne • Athens • Brookhaven • Caltech • Cambridge • Chicago • Dubna • Elmhurst
Fermilab • Harvard • IHEP-Beijing • Illinois Inst. of Technology • Indiana • ITEP-Moscow
Lebedev • Livermore • Macalester • Minnesota • Minnesota-Duluth • Northwestern
Oxford • Pittsburgh • Protvino • Rutherford • South Carolina • Stanford • Sussex • Texas A&M
Texas-Austin • Tufts • University College London • Western Washington • Wisconsin

MINOS Detectors

Basic Ingredients of MINOS detectors

- Fine grained, Iron/scintillator sampling calorimeters
- 2.54cm thick Steel absorbers with toroidal B-field of ~1.3 T
- 1 cm thick, 4 cm wide Scintillator strips
- 1.2 mm diameter wavelength shifter and clear fibers
- Multi-Anode PMT
- Front end Electronics & DAQ

Far Detector at Soudan

- 8m wide octagonal shape
- 486 steel plates
- ~5,400 tons

Near Detector at Fermilab

- 3.8x4.8m squashed octagon
- 282 steel plates
- ~980 tons

Both Detectors have

• 2-views for tracking

MINOS Far Detector

- 8m Octagonal Tracking Calorimeter
- 486 layers of 2.54cm Fe
- 2 sections, each 15m long
- 4cm wide solid scintillator strips with WLS fiber readout
- 25,800 m² active detector planes
- Magnet coil provides ≈1.3T
- 5.4kt total mass

Half of the MINOS Detector

MINOS Near Detector

Robert C. Webb La Thuile 2002 March 4, 2002 Page 14

2.9 m • 16.6 m long, 980 tons • 282 "squashed octagon" planes 3.8 m • Forward section: 120 planes 4/5 partially instrumented 1/5 planes: full area coverage 4.8 m • Spectrometer section:162 planes Coil hole 4/5 planes not instrumented Beam fiducial region 1/5 planes: full area coverage Instrumented area

Scintillator Readout Schematic (Far Detector)

- Strips assembled into 20or 28-strip "modules"
- Fire resistant aluminum light cases
- 2-ended WLS fiber readout
- WLS to clear fiber cables at module connectors
- MUX boxes route 8 fibers to one PMT pixel

MINOS Scintillator System

- An 8 m Scintillator Module
- Optical fiber readout
- A 16-channel M16 PMT

NuMI Excavation

- Drill and blast for the shafts, target hall, support labyrinth, absorber hall, and MINOS near detector hall
- Tunnel boring machine for the decay tunnel and access to the ND hall and beam monitoring areas

NuMI Excavation Summer 2001

NuMI Tunnels and Halls Construction Progress

Soudan Underground Laboratory

MINOS Progress - Far Detector Hall

MINOS Far Detector Installation - Detector Plane Assembly

Robert C. Webb La Thuile 2002 March 4, 2002 Page 22

Detector plane strongbacks

Scintillator module mounting

- 146 Planes mounted as of 3/1/2002
- 136 Planes being readout through DAQ
- 1.6kT of fiducial mass
- 1/3 pe threshold with 4 out of 5 planes required for trigger
- ~2% of the detector is being mounted per day at the present rate of assembly

Double Cosmic-Ray Muon in MINOS Far Detector

Robert C. Webb La Thuile 2002 March 4, 2002 Page 24

Detector plane number $(1-76) \rightarrow$

Near Detector Construction

The MINOS Calibration Detector

Robert C. Webb La Thuile 2002 March 4, 2002 Page 26

•60 1m X 1m MINOS modules with Far Detector readout Electronics.

•Assembled in the CERN T11 beam in the Spring of 2001.

•Completed run with energies up to 3 GeV .

•Schedule to run at higher energies in 2002.

The MINOS Calibration Detector

Robert C. Webb La Thuile 2002 March 4, 2002 Page 27

Data taken with •Pions •Electrons

- •Protons(using TOF)
- •Muons

Sample Muon event displayed to the right

Schedule

- Far Detector installation ('01-'03)
 - « Cosmic rays and atmospheric neutrinos with half the detector (and the magnetic field) in summer 2002
 - « 10kt-years by 2005
 - « CP tests in upward muons and momentum analyzed partially-contained events
- Near Detector assembly and installation ('01-03')
- Beam line commissioning ('04-'05)

- MINOS will confront the atmospheric neutrino signal with -
 - High statistics accelerator data
 - Good flavor separation
 - Good control of systematics
- With initial calibration data runs completed at CERN and beginning at Soudan with the *real* detector...
 - We are on the road to exciting neutrino physics in the next few years!