Recent Spin Physics Results from HERMES

Jochen Volmer

DESY-Zeuthen

on behalf of the HERMES Collaboration

Outline

- \circ Motivation
- The HERMES Spectrometer
- Inclusive and semi-inclusive polarised DIS
- Generalised Parton Distributions
- \circ Deeply Virtual Compton Scattering
- \circ Summary and Outlook

Motivation

the spin structure of the nucleon:

$$\langle S_z^{\rm N} \rangle = \frac{1}{2} = J_q + J_g$$

= $\frac{1}{2} \Delta \Sigma + L_q + \Delta G + L_g$

 $\Delta\Sigma$ has been found to be small in inclusive DIS experiments

- 1988: EMC: "spin crisis" $\Delta \Sigma = 0.12 \pm 0.17 \approx 0$?
- 1988-2000: SLAC, CERN, DESY: $\Delta \Sigma \approx 0.2...0.4 > 0$

possible contributions to $\langle S_z \rangle$ still unknown

- \circ strange sea contribution Δs ?
- \circ gluon contribution ΔG ? $\rightarrow \mathsf{PGF}$
- \circ orbital angular momentum $L_{q,g}$?

The HERMES Experiment at DESY

- targets ³He, p, d, Ne, Kr, ...
- $\circ e^+$ (1998: e^-) at 27.5 GeV beam energy
- \circ forward spectrometer with angular accept. 0.04 < $|\Theta|$ < 0.22 rad
- \circ angular resol. $\Delta \Theta < 0.6$ mrad, momentum resol. $\Delta p/p = 0.7...1.3\%$
- \circ energy resolution of e.m. calorimeter about 5%
- threshold Čerenkov detector replaced by a RICH detector in 1998
- \circ lepton identification effic. \sim 98%, low hadron contam. (\leq 1%)

Polarised (Semi-)Inclusive Deep-Inelastic Scattering

in semi-inclusive DIS a hadron h is detected in coincidence with the scattered lepton:

kinematics:

$$Q^{2} \stackrel{\text{lab}}{=} 4EE' \sin^{2}(\Theta/2)$$

$$\nu \stackrel{\text{lab}}{=} E - E'$$

$$x \stackrel{\text{lab}}{=} Q^{2}/2M\nu$$

$$z \stackrel{\text{lab}}{=} E_{h}/\nu$$

$$x_{F} \simeq 2P_{\parallel}^{*}/W$$

target fragments

current fragment

flavour tagging:

- \rightarrow correlation between quark flavour q and type h of hadron via fragmentation function $D^h_q(\boldsymbol{z},\boldsymbol{Q}^2)$
- \rightarrow detection of hadrons from the current fragmentation:

$$z > 0.2$$
$$x_{\rm F} > 0.1$$

Spin Structure Functions in DIS

measure asymmetries w.r.t. orientation of beam and target spins

$$A_{\parallel} = \frac{\sigma^{\vec{\leftarrow}} - \sigma^{\vec{\Rightarrow}}}{\sigma^{\vec{\leftarrow}} + \sigma^{\vec{\Rightarrow}}}$$

relation to virtual photon asymmetries A_1 and A_2 :

$$A_{\parallel} = D(A_1 + \eta A_2)$$

relation to structure functions g_1 and F_1 :

$$A_1 \approx \frac{g_1}{F_1}$$

D: photon depolarization factor η : kinematic factor ($\eta \approx \stackrel{Q^2 >> M^2}{\longrightarrow} 0$)

simple physical interpretation of g_1 and F_1 in terms of quark (helicity) distributions $q_f(x)$ and $\Delta q_f(x)$ (LO approach):

$$F_{1}(x) = \frac{1}{2} \sum_{f} e_{f}^{2} \quad q_{f}(x) = \frac{1}{2} \sum_{f} e_{f}^{2} \left(q_{f}^{+}(x) + q_{f}^{-}(x) \right)$$
$$g_{1}(x) = \frac{1}{2} \sum_{f} e_{f}^{2} \Delta q_{f}(x) = \frac{1}{2} \sum_{f} e_{f}^{2} \left(q_{f}^{+}(x) - q_{f}^{-}(x) \right)$$

Spin Structure Functions - Measurement

- $\circ g_1^d/F_1^d$ based on 8 million DIS events $\circ g_1^d/F_1^d$ independent of Q^2 in DIS region within uncertainties \circ all data at measured values \circ low-x proton data on xg_1 revisited
- \circ 2000 data provide good statistics on xg_1 on deuterium target

Semi-Inclusive Asymmetries - Measurement

Polarized Quark Distributions (LO)

HERMES ∆q extraction þ–þMC projection

solid lines: parametrization GRSV 96 (LO std.)

[Glück et al., PRD53(1996)4775]

dashed lines: positivity limits

sea quark pol. assumed to be flavour symmetric:

 $\frac{\Delta q_{\rm s}}{q_{\rm s}} \equiv \frac{\Delta u_{\rm s}}{u_{\rm s}} = \frac{\Delta \bar{u}}{\bar{u}} = \frac{\Delta d_{\rm s}}{d_{\rm s}} = \frac{\Delta \bar{d}}{\bar{d}} = \frac{\Delta s}{s} = \frac{\Delta \bar{s}}{\bar{s}}$

projections based on full statistics \rightarrow improvement in *d* quark sector \rightarrow separation of sea quark flavours

 $\Delta \Sigma = 0.3 \pm 0.04 \pm 0.09$ [HERMES, PLB464(1999)123]
polarized quark sea not yet separated

exclusive process:

all particles from process detected, or (e.g. via missing mass) identified

new observables in hard exclusive processes: Generalized Parton Distributions: $H, E, \tilde{H}, \tilde{E}(x, \xi, t)$

 $\xi:$ longitudinal momentum transfer, $(P'-P)^2=t$

forward limit:	form factors
$H^q(x,0,0) = q(x)$	$\int_{-1}^{+1} \mathrm{d}x H^q(x,\xi,t) = F_1^q(t)$
	$\int_{-1}^{+1} \mathrm{d}x E^q(x,\xi,t) = F_2^q(t)$
$\tilde{H}^q(x,0,0) = \Delta q(x)$	$\int_{-1}^{+1} \mathrm{d}x \tilde{H}^q(x,\xi,t) = g_A^q(t)$
	$\int_{-1}^{+1} \mathrm{d}x \tilde{E}^q(x,\xi,t) = h_A^q(t)$

only polarized GPD's present in production of pseudoscalar mesons only unpolarized GPD's present in production of vector mesons All four GPD's present in Deeply Virtual Compton Scattering

Amplitudes add up coherently, BH process dominant at HERMES kinematics

 \rightarrow access to real and imaginary parts of amplitudes through interference by measuring asymmetries in ϕ_{γ} , the azimuthal angle between scattering plane and reaction plane

measurement of

beam charge asymmetry $\frac{d\sigma(e^+p) - d\sigma(e^-p)}{d\sigma(e^+p) + d\sigma(e^-p)}$ real part of interference term

 $\cos(\phi_{\gamma})$ modulation

beam helicity asymmetry: $\overrightarrow{}$

 $\frac{\mathrm{d}\sigma(e^+p) - \mathrm{d}\sigma(e^+p)}{\overset{\rightarrow}{\mathrm{d}\sigma(e^+p) + \mathrm{d}\sigma(e^+p)}}$ imaginary part of interference term $\sin(\phi_{\gamma})$ modulation

 \to in principle use $\cos(\phi_\gamma)$ and $\sin(\phi_\gamma)$ moments to extract real and imaginary parts of DVCS amplitude

Deeply Virtual Compton Scattering ϕ_{γ} Dependences

single spin asymmetry [96/97 data published in PRL87(2001)182001]

- statistical errors only
- each dataset based on about 5 million DIS events, and 4000 DVCStype events
- $\circ\,$ average beam polarization 50%
- measured on polarized and unpolarized hydrogen

beam charge asymmetry

- $\circ\,$ statistical errors only
- $\circ e^+$ and e^- datasets based on a total of about 5 million DIS events, and 4000 DVCS-type events
- measured on polarized (e^+, e^-) and unpolarized (e^+) hydrogen $(\rightarrow \text{low } e^- \text{ statistics})$

Deeply Virtual Compton Scattering Missing Mass Dependences

single spin asymmetry

- o statistical errors only
- $\circ A_{
 m LU}^{\sin(\phi)} = -0.21 \pm 0.04 (stat) \pm 0.04 (syst)$ (exclusive bin -1.5 GeV < M_x < 1.7 GeV)

 $\left[96/97 \text{ data published in } \mathsf{PRL87}(2001)182001\right]$

beam charge asymmetry

- \circ statistical errors only
- $A_{\rm C}^{\cos(\phi)} = 0.11 \pm 0.04(stat) \pm 0.03(syst)$ (exclusive bin: -1.5 GeV < M_x < 1.7 GeV)

Deeply Virtual Compton Scattering SSA Kinematical Dependences

Summary and Outlook

o spin physics is an exciting and rapidly developing field

 $\circ \Delta q$:

- extraction yields parallel (antiparallel) alignment of valence u-(d)-quarks with nucleon spin
- sea quark contribution compatible with zero
- more precise data will soon be available
 - \Rightarrow better separation of sea quark flavours
- DVCS:
 - first study of kinematical dependences of SSA
 - first measurement of beam charge asymmetry
 - new data will soon be available
 - \Rightarrow study of deuterium target data
 - \Rightarrow study of target spin asymmetry
- \circ after 2002 HERA startup, running with transversely polarized hydrogen target \rightarrow transversity, δq

